
June 2008

OSCI TLM-2.0 USER MANUAL

Software version: TLM-2.0

Document version: JA22

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)

All rights reserved

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)ii

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) iii

Contributors

The TLM-2.0 standard was created under the leadership of the following individuals:

Bart Vanthournout, CoWare, TLM Working Group Chair
James Aldis, Texas Instruments, TLM Working Group Vice-Chair

Previous TLM Working Group Chairs:

Trevor Wieman, Intel
Frank Ghenassia, ST Microelectronics
Mark Burton, GreenSocs

This document was authored by:

 John Aynsley, Doulos

The following is a list of active technical participants in the OSCI TLM Working Group at the time of the
release of TLM-2.0:

Tom Aernoudt, CoWare
James Aldis, Texas Instruments
John Aynsley, Doulos
Guillaume Audeon, ARM
Geoff Barrett, Broadcom
Bill Bunton, ESLX
Mark Burton, GreenSocs
Jerome Cornet, ST Microelectronics
Ross Dickson, Virtutech
Jack Donovan, ESLX
Jakob Engblom, Virtutech
Alan Fitch, Doulos
Michel Genard, Virtutech

Robert Guenzel, GreenSocs
Anna Keist, ESLX
Tim Kogel, CoWare
Laurent Maillet-Contoz, ST Microelectronics
Kiyoshi Makino, Mentor Graphics
Marcelo Montoreano, Synopsys
Victor Reyes, NXP
Olaf Scheufen, Synopsys
Bart Vanthournout, CoWare
Kaz Yoshinaga, Starc
Trevor Wieman, Intel
Charles Wilson, ESLX

The following is a list of active technical participants in the OSCI TLM Working Group at the time of the
release of TLM-2.0-draft-2:

Tom Aernoudt, CoWare
James Aldis, OCP-IP
John Aynsley, Doulos
Guillaume Audeon, ARM
Bill Bunton, ESLX
Mark Burton, GreenSocs
Jack Donovan, ESLX
Othman Fathy, Mentor Graphics
Alan Fitch, Doulos
Karthick Gururaj, NXP
Atsushi Kasuya, Jeda
Tim Kogel, CoWare

Laurent Maillet-Contoz, ST Microelectronics
Marcelo Montoreano, Synopsys
Rishiyur Nikhil, Bluespec
Victor Reyes, NXP
Adam Rose, Mentor Graphics
Olaf Scheufen, Synopsys
Alan Su, Springsoft
Stuart Swan, Cadence
Bart Vanthournout, CoWare
Yossi Veller, Mentor Graphics
Trevor Wieman, Intel
Charles Wilson, ESLX

The following people have also contributed to the OSCI TLM Working Group:

Mike Andrews, Mentor Graphics
Matthew Ballance, Mentor Graphics
Ryan Bedwell, Freescale
Bishnupriya Bhattacharya, Cadence
Bobby Bhattacharya, ARM
Axel Braun, University of Tuebingen
Herve Broquin, ST Microelectronics
Adam Erickson, Cadence
Frank Ghenassia, ST Microelectronics
Mark Glasser, Mentor Graphics
Andrew Goodrich, Forte Design
Serge Goosens, CoWare
Thorsten Groetker, Synopsys
Kamal Hashmi, SpiraTech
Holger Keding, Synopsys
Devon Kehoe, Mentor Graphics

Wolfgang Klingauf, GreenSocs
David Long, Doulos
Kiyoshi Makino, Mentor Graphics
Mike Meredith, Forte Design
David Pena, Cadence
Nizar Romdhane, ARM
Stefan Schmermbeck, Chipvision
Shiri Shem-Tov, Freescale
Jean-Philippe Strassen, ST Microelectronics
Tsutomu Takei, STARC
Jos Verhaegh, NXP
Maurizio Vitale, Philips Semiconductors
Vincent Viteau, Summit Design
Thomas Wilde, Infineon
Hiroyuki Yagi, STARC
Eugene Zhang, Jeda

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) v

Contents

1 OVERVIEW ... 1

1.1 Scope.. 2

1.2 Source code and documentation.. 2

2 REFERENCES.. 4

2.1 Bibliography.. 4

3 INTRODUCTION... 5

3.1 Background... 5

3.2 Transaction-level modeling, use cases and abstraction ... 5

3.3 Coding styles ... 6
3.3.1 Untimed coding style.. 7
3.3.2 Loosely-timed coding style and temporal decoupling .. 7
3.3.3 Synchronization in loosely-timed models... 8
3.3.4 Approximately-timed coding style ... 9
3.3.5 Characterization of loosely-timed and approximately-timed coding styles................................ 9
3.3.6 Switching between loosely-timed and approximately-timed modeling...................................... 9
3.3.7 Cycle-accurate modeling .. 10
3.3.8 Blocking versus non-blocking transport interfaces... 10
3.3.9 Use cases and coding styles.. 11

3.4 Initiators, targets, sockets, and bridges .. 11

3.5 DMI and debug transport interfaces .. 13

3.6 Combined interfaces and sockets .. 13

3.7 Namespaces ... 14

3.8 Header files and version numbers... 14

4 TLM-2 CORE INTERFACES... 15

4.1 Transport interfaces ... 15
4.1.1 Blocking transport interface ... 15

4.1.1.1 Introduction .. 15

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)vi

4.1.1.2 Class definition... 16
4.1.1.3 The TRANS template argument ... 16
4.1.1.4 Rules ... 16
4.1.1.5 Message sequence chart – blocking transport... 18
4.1.1.6 Message sequence chart – temporal decoupling... 19
4.1.1.7 Message sequence chart – the time quantum.. 20

4.1.2 Non-blocking transport interface.. 21
4.1.2.1 Introduction .. 21
4.1.2.2 Class definition... 21
4.1.2.3 The TRANS and PHASE template arguments ... 22
4.1.2.4 The nb_transport_fw and nb_transport_bw call ... 22
4.1.2.5 The trans argument ... 23
4.1.2.6 The phase argument.. 23
4.1.2.7 The tlm_sync_enum return value ... 23
4.1.2.8 tlm_sync_enum summary... 25
4.1.2.9 Message sequence chart – using the backward path ... 26
4.1.2.10 Message sequence chart – using the return path.. 27
4.1.2.11 Message sequence chart – early completion.. 28
4.1.2.12 Message sequence chart – timing annotation .. 29

4.1.3 Timing annotation with the transport interfaces ... 30
4.1.3.1 The sc_time argument .. 30

4.1.4 Migration path from TLM-1... 31

4.2 Direct memory interface .. 32
4.2.1 Introduction .. 32
4.2.2 Class definition... 32
4.2.3 get_direct_mem_ptr method... 34
4.2.4 template argument and tlm_generic_payload class .. 34
4.2.5 tlm_dmi class.. 35
4.2.6 invalidate_direct_mem_ptr method .. 38
4.2.7 Optimization using a DMI Hint.. 39

4.3 Debug transport interface.. 40
4.3.1 Introduction .. 40
4.3.2 Class definition... 40
4.3.3 TRANS template argument and tlm_generic_payload class .. 40
4.3.4 Rules... 41

5 COMBINED INTERFACES AND SOCKETS .. 43

5.1 Combined interfaces... 43
5.1.1 Introduction .. 43
5.1.2 Class definition... 43

5.2 Initiator and target sockets.. 44
5.2.1 Introduction .. 44

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) vii

5.2.2 Class definition... 44
5.2.3 Classes tlm_base_initiator_socket_b and tlm_base_target_socket_b....................................... 48
5.2.4 Classes tlm_base_initiator_socket and tlm_base_target_socket... 48
5.2.5 Classes tlm_initiator_socket and tlm_target_socket ... 50

5.3 Convenience sockets ... 53
5.3.1 Introduction .. 53
5.3.2 Simple sockets .. 54

5.3.2.1 Introduction .. 54
5.3.2.2 Class definition... 54
5.3.2.3 Rules ... 56
5.3.2.4 Simple target socket b/nb conversion ... 58

5.3.3 Tagged simple sockets.. 61
5.3.3.1 Introduction .. 61
5.3.3.2 Class definition... 61
5.3.3.3 Rules ... 63

5.3.4 Multi-sockets .. 64
5.3.4.1 Introduction .. 64
5.3.4.2 Class definition... 64
5.3.4.3 Rules ... 66

6 GENERIC PAYLOAD.. 68

6.1 Introduction .. 68

6.2 Extensions and interoperability .. 68
6.2.1 Use the generic payload directly, with ignorable extensions.. 69
6.2.2 Define a new protocol types class containing a typedef for tlm_generic_payload 70
6.2.3 Define a new protocol types class and a new transaction type ... 71

6.3 Generic payload attributes and methods.. 71

6.4 Class definition ... 71

6.5 Generic payload memory management .. 74

6.6 Constructors, assignment, and destructor.. 77

6.7 Default values and modifiability of attributes.. 78

6.8 Command attribute .. 78

6.9 Address attribute .. 79

6.10 Data pointer attribute .. 80

6.11 Data length attribute .. 80

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)viii

6.12 Byte enable pointer attribute... 81

6.13 Byte enable length attribute... 82

6.14 Streaming width attribute.. 83

6.15 DMI allowed attribute.. 84

6.16 Response status attribute ... 84
6.16.1 The standard error response.. 85

6.17 Endianness .. 90
6.17.1 Introduction .. 90
6.17.2 Rules... 90

6.18 Helper functions to determine host endianness ... 94
6.18.1 Introduction .. 94
6.18.2 Definition.. 94
6.18.3 Rules... 94

6.19 Helper functions for endianness conversion... 95
6.19.1 Introduction .. 95
6.19.2 Definition.. 96
6.19.3 Rules... 96

6.20 Generic payload extensions.. 98
6.20.1 Introduction .. 98
6.20.2 Rationale... 98
6.20.3 Extension pointers, objects and bridges.. 98
6.20.4 Rules... 99

6.21 Instance-specific extensions ... 104
6.21.1 Introduction .. 104
6.21.2 Class definition... 104

7 PHASES AND BASE PROTOCOL... 107

7.1 Phases .. 107
7.1.1 Introduction .. 107
7.1.2 Class definition... 107
7.1.3 Rules... 108

7.2 Base protocol... 110
7.2.1 Introduction .. 110
7.2.2 Class definition... 110
7.2.3 Base protocol phase sequences... 110
7.2.4 Base protocol timing parameters and flow control ... 112

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) ix

7.2.5 Base protocol transaction ordering rules .. 113
7.2.6 Summary of obligations on base protocol components .. 115

7.2.6.1 Obligations on an initiator .. 115
7.2.6.2 Obligations on an initiator using nb_transport ... 115
7.2.6.3 Obligations on a target.. 116
7.2.6.4 Obligations on a target using nb_transport .. 116
7.2.6.5 Obligations on an interconnect component... 117

8 OTHER CLASSES.. 118

8.1 Global quantum and quantum keeper.. 118
8.1.1 Introduction .. 118
8.1.2 Class definition... 118
8.1.3 General rules for processes using temporal decoupling.. 119
8.1.4 Class tlm_global_quantum ... 120
8.1.5 Class tlm_quantumkeeper... 121

8.2 Payload event queue ... 123
8.2.1 Introduction .. 123
8.2.2 Class definition... 123

8.3 Analysis interface and analysis ports.. 124
8.3.1 Class definition... 125
8.3.2 Rules... 127

9 TLM-1 LEGACY.. 130

9.1 TLM-1.0 core interfaces... 130

9.2 TLM-1.0 fifo interfaces .. 132

9.3 tlm_fifo .. 133

10 GLOSSARY ... 135

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 1

1 Overview
This document is the User Manual for the OSCI Transaction Level Modeling standard, version 2.0. This
version of the standard supersedes versions 2.0-draft-1 and 2.0-draft-2, and is not generally compatible with
either. This version of the standard includes the core interfaces from TLM 1.0.

TLM-2.0 consists of a set of core interfaces, initiator and target sockets, the generic payload and base
protocol, utilities, the analysis interfaces and ports, and the TLM-1.0 core interfaces. The TLM-2 core
interfaces consist of the blocking and non-blocking transport interfaces, the direct memory interface (DMI),
and the debug transport interface. The generic payload supports the abstract modeling of memory-mapped
buses, together with an extension mechanism to support the modeling of specific bus protocols whilst
maximizing interoperability.

The TLM-2 classes are layered on top of the SystemC class library as shown in the diagram below. For
maximum interoperability, and particularly for memory-mapped bus modeling, it is recommended that the
TLM-2 core interfaces, sockets, generic payload and base protocol be used together in concert. This is known
as the interoperability layer. In cases where the generic payload is inappropriate, it is possible for the core
interfaces and the initiator and target sockets, or the core interfaces alone, to be used with an alternative
transaction type. It is even technically possible for the generic payload to be used directly with the core
interfaces without the initiator and target sockets, although this approach is not recommended.

It is not strictly necessary to use the utilities, analysis interfaces and analysis ports to achieve interoperability
between bus models. Nonetheless, these classes should be used where possible for consistency of style and
are documented and maintained as part of the TLM-2.0 standard.

TLM-1 standard

Analysis ports

TLM 2.0 Classes

IEEE 1666™ SystemC

Figure 1

Analysis interface

Utilities:
Convenience sockets
Payload event queues
Quantum keeper

Interoperability layer for bus modeling

TLM-2 core interfaces:

Blocking transport interface
Non-blocking transport interface
Direct memory interface
Debug transaction interface

Combined interfaces

Initiator and target sockets

Generic payload Phases

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)2

The generic payload is primarily intended for memory-mapped bus modeling, but may also be used to model
other non-bus protocols with similar attributes. The attributes and phases of the generic payload can be
extended to model specific protocols, but such extensions may lead to a reduction in interoperability
depending on the degree of deviation from the standard non-extended generic payload.

A fast, loosely-timed model is typically expected to use the blocking transport interface, the direct memory
interface, and temporal decoupling. A more accurate, approximately-timed model is typically expected to use
the non-blocking transport interface and the payload event queues. These statements are just coding style
suggestions, however, and are not a normative part of the TLM-2 standard.

1.1 Scope

This document describes the contents of the TLM-2.0 standard. The main focus of this document is the key
concepts and semantics of the TLM-2 core interfaces and classes. It does not describe all the supporting code,
examples, and unit test. It lists the TLM-1 core interfaces, but does not define their semantics. This document
is not a definitive language reference manual. It is the intention that this document will be extended over time
to add more practical guidelines on how to use TLM-2.0

1.2 Source code and documentation

The TLM-2.0 release has a hierarchical directory structure as follows:

include/tlm The C++ source code of the TLM-2 standard, with readme files and release notes

./tlm_h/tlm_req_rsp The TLM-1 standard

./tlm_h/tlm_req_rsp/tlm_1_interfaces TLM-1 core interfaces

./tlm_h/tlm_req_rsp/tlm_channels TLM-1 fifo and req-rsp channels

./tlm_h/tlm_req_rsp/tlm_ports TLM-1 non-blocking ports with event finders

./tlm_h/tlm_req_rsp/tlm_adapters TLM-1 slave-to-transport & transport-to-master adapters

./tlm_h/tlm_trans TLM-2 interoperability classes

./tlm_h/tlm_trans/tlm_2_interfaces TLM-2 core interfaces

./tlm_h/tlm_trans/tlm_generic_payload TLM-2 generic payload

./tlm_h/tlm_trans/tlm_sockets TLM-2 sockets

./tlm_h/tlm_quantum TLM-2 global quantum

./tlm_h/tlm_analysis TLM-2 analysis interface and ports

./tlm_utils TLM-2 standard utility classes not essential for interoperability

docs Documentation, including User Manual, white papers, and Doxygen
examples A set of application-oriented examples with their own documentation
unit_test A set of regression tests

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 3

The docs directory includes HTML documentation for the C++ source code created with Doxygen. This gives
comprehensive text-based and graphical views of the code structured by class and by file. The entry point for
this documentation is the file docs/doxygen/html/index.html.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)4

2 References
This standard shall be used in conjunction with the following publications:

ISO/IEC 14882:2003, Programming Languages—C++

IEEE Std 1666-2005, SystemC Language Reference Manual

Requirements Specification for TLM 2.0, Version 1.1, September 16, 2007

2.1 Bibliography

The following books may provide useful background information:

Transaction-Level Modeling with SystemC, TLM Concepts and Applications for Embedded Systems, edited
by Frank Ghenassia, published by Springer 2005, ISBN 10 0 387-26232-6(HB), ISBN 13 978-0-387-26232-
1(HB)

Integrated System-Level Modeling of Network-on-Chip enabled Multi-Processor Platforms, by Tim Kogel,
Rainer Leupers, and Heinrich Meyr, published by Springer 2006, ISBN 10 1-4020-4825-4(HB), ISBN 13
978-1-4020-4825-4(HB)

ESL Design and Verification, by Brian Bailey, Grant Martin and Andrew Piziali, published by Morgan
Kaufmann/Elsevier 2007, ISBN 10 0 12 373551-3, ISBN 13 978 0 12 373551-5

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 5

3 Introduction

3.1 Background

The TLM-1 standard defined a set of core interfaces for transporting transactions by value or const reference.
This set of interfaces is being used successfully in some applications, but has three shortcomings with respect
to the modeling of memory-mapped buses and other on-chip communication networks:

a) TLM-1 has no standard transaction class, so each application has to create its own non-standard classes,
resulting in very poor interoperability between models from different sources. TLM-2 addresses this
shortcoming with the generic payload.

b) TLM-1 has no support for timing annotation, so no standard way of communicating timing information
between models. TLM-1 models would typically implement delays by calling wait, which slows down
simulation. TLM-2 addresses this shortcoming with the addition of timing annotation to the blocking and
non-blocking transport interface.

c) The TLM-1 interfaces require all transaction objects and data to be passed by value or const reference,
which slows down simulation. Some applications work around this restriction by embedded pointers in
transaction objects, but this is non-standard and non-interoperable. TLM-2 addresses this shortcoming
with transaction objects whose lifetime extends across several transport calls, supported by a new
transport interface.

3.2 Transaction-level modeling, use cases and abstraction

There has been a longstanding discussion in the ESL community concerning what is the most appropriate
taxonomy of abstraction levels for transaction level modeling. Models have been categorized according to a
range of criteria, including granularity of time, frequency of model evaluation, functional abstraction,
communication abstraction, and use cases. The TLM-2 activity explicitly recognizes the existence of a variety
of use cases for transaction-level modeling (see the Requirements Specification for TLM-2.0), but rather than
defining an abstraction level around each use case, TLM-2 takes the approach of distinguishing between
interfaces (APIs) on the one hand, and coding styles on the other. The TLM-2 standard defines a set of
interfaces which should be thought of as low-level programming mechanisms for implementing transaction-
level models, then describes a number of coding styles that are appropriate for, but not locked to, the various
use cases.

The definitions of the standard TLM-2 interfaces stand apart from the descriptions of the coding styles. It is
the TLM-2 interfaces which form the normative part of the standard and ensure interoperability. Each coding
style can support a range of abstraction across functionality, timing and communication. In principle users can
create their own coding styles.

An untimed functional model consisting of a single software thread can be written as a C function or as a
single SystemC process, and is sometimes termed an algorithmic model. Such a model is not transaction-level
per se, because by definition a transaction is an abstraction of communication, and a single-threaded model
has no inter-process communication. A transaction-level model requires multiple SystemC processes to
simulate concurrent execution and communication.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)6

An abstract transaction-level model containing multiple processes (multiple software threads) requires some
mechanism by which those threads can yield control to one another. This is because SystemC uses a co-
operative multitasking model where an executing process cannot be pre-empted by any other process.
SystemC processes yield control by calling wait in the case of a thread process, or returning to the kernel in
the case of a method process. Calls to wait are usually hidden behind a programming interface (API), which
may model a particular abstract or concrete protocol that may or may not rely on timing information.

Synchronization may be strong in the sense that the sequence of communication events is precisely
determined in advance, or weak in the sense that the sequence of communication events is partially
determined by the detailed timing of the individual processes. Strong sychronization is easily implemented in
SystemC using FIFOs or semaphores, allowing a completely untimed modeling style where in principle
simulation can run without advancing simulation time. Untimed modeling in this sense is outside the scope of
TLM-2.0. On the other hand, a fast virtual platform model allowing multiple embedded software threads to
run in parallel may use either strong or weak synchronization. In this standard, the appropriate coding style
for such a model is termed loosely-timed.

A more detailed transaction-level model may need to associate multiple protocol-specific timing points with
each transaction, such as timing points to mark the start and the end of each phase of the protocol. By
choosing an appropriate number of timing points, it is possible to model communication to a high degree of
timing accuracy without the need to execute the component models on every single clock cycle. In this
standard, such a coding style is termed approximately-timed.

3.3 Coding styles

A coding style is a set of programming language idioms that work well together, not a specific abstraction
level or software programming interface. TLM-2 recognizes several coding styles which should be used as a

Use cases

Loosely-timed

Approximately-timed

Software
development

Architectural
analysis

Hardware
verification

Software
performance

Blocking
interface

Non-blocking
interfaceDMI SocketsQuantum Generic

payload

TLM-2 Coding styles

Mechanisms

Each style supports a range of abstractions

Figure 2

Phases

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 7

guide to model writing. For simplicity and clarity, this document restricts itself to elaborating two specific
named coding styles; loosely-timed and approximately-timed. By their nature the coding styles are not
precisely defined, and the rules governing the TLM-2 core interfaces are defined independently from these
coding styles. In principle, it would be possible to define other coding styles based on the TLM-1 and TLM-2
mechanisms.

3.3.1 Untimed coding style

TLM-2 does not make explicit provision for an untimed coding style, because all contemporary bus-based
systems require some notion of time in order to model software running on one or more embedded processors.
However, untimed modeling is supported by the TLM-1 core interfaces. (The term untimed is sometimes used
to refer to models that contain a limited amount of timing information of unspecified accuracy. In TLM-2,
such models would be termed loosely-timed.)

3.3.2 Loosely-timed coding style and temporal decoupling

The loosely-timed coding style makes use of the blocking transport interface. This interface allows only two
timing points to be associated with each transaction, corresponding to the call to and return from the blocking
transport function. In the case of the base protocol, these two timing points are loosely associated with the
beginning of the request phase and the beginning of the response phase. In principle these two timing points
could occur at the same simulation time or could be skewed.

The loosely-timed coding style is appropriate for the use case of software development using a virtual
platform model of an MPSoC, where the software may include one or more operating systems. The loosely-
timed coding style supports the modeling of timers and interrupts, sufficient to boot an operating system and
run arbitrary code on the target machine.

The loosely-timed coding style also supports temporal decoupling, where parts of the model are permitted to
run ahead in a local “time warp” until they reach the point when they need to synchronize with the rest of the
system. Temporal decoupling can result in very fast simulation for certain systems because it increases the
data and code locality and reduces the scheduling overhead of the simulator. Each processor is allowed to run
for a certain time slice or quantum before switching to the next.

Just considering SystemC itself, the SystemC scheduler keeps a tight hold on simulation time. The scheduler
advances simulation time to the time of the next event, then runs any processes due to run at that time or
sensitive to that event. SystemC processes only run at the current simulation time (as obtained by calling the
method sc_time_stamp), and whenever a SystemC process reads or writes a variable, it accesses the state of
the variable as it would be at the current simulation time. When a process finishes running it must pass control
back to the simulation kernel. If the simulation model is written at a fine-grained level, then the overhead of
event scheduling and process context switching becomes the dominant factor in simulation speed. One way to
speed up simulation is to allow processes to run ahead of the current simulation time, or temporal decoupling.

When implementing temporal decoupling in SystemC, a process can be allowed to run ahead of simulation
time until it encounters a dependency on a variable updated by another process, or needs to interact with
another process. At that point, the process may either accept the current value and continue (with some
possible loss of timing accuracy) or may return control to the simulation kernel, only resuming the process
later in simulation time when the value becomes known. Each process is responsible for determining whether
it can run ahead of simulation time without breaking the functionality of the model. When a process

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)8

encounters an external dependency it has two choices: either force synchronization, which means yielding to
allow all other processes to run as normal until simulation time catches up, or accept the current value and
continue. The synchronization option guarantees functional congruency with the standard SystemC simulation
semantics. Continuing with the current value relies on making assumptions concerning communication and
timing in the modeled system. It assumes that no damage will be done by sampling the value too early, and
that any subsequent change to the value will be picked up in a subsequent process execution. This assumption
is usually valid in the context of a virtual platform simulation, where the software stack should not be
dependent on the low-level details of the hardware timing anyway.

Temporal decoupling is characteristic of the loosely-timed coding style.

If a process were permitted to run ahead of simulation time with no limit, the SystemC scheduler would be
unable to operate and other processes would never get the chance to execute. This may be avoided by
reference to the global quantum, which imposes an upper limit on the time a process is allowed to run ahead
of simulation time. The quantum is set by the application, and the quantum value represents a tradeoff
between simulation speed and accuracy. Too small a quantum forces processes to yield and synchronize very
frequently, slowing down simulation. Too large a quantum might introduce timing inconsistencies across the
system, possibly to the point where the system ceases to function.

For example, consider the simulation of a system consisting of a processor, a memory, a timer, and some slow
external peripherals. The software running on the processor spends most of its time fetching and executing
instructions from system memory, and only interacts with the rest of the system when it is interrupted by the
timer, say every 1ms. The ISS that models the processor could be permitted to run ahead of SystemC
simulation time with a quantum of up to 1ms, making direct accesses to the memory model, but only
synchronizing with the peripheral models at the rate of timer interrupts. The point here is that the ISS does not
have to be locked to the simulation time clock of the hardware part of the system, as would be the case with
more traditional hardware-software co-simulation. Depending on the detail of the models, this could give a
simulation speed improvement of up to 1000X.

It is quite possible for some processes to be temporally decoupled and others not, and also for different
processes to use different values for the time quantum. However, any process that is not temporally decoupled
is likely to become a simulation speed bottleneck.

In TLM-2, temporal decoupling is supported by the tlm_global_quantum class and the timing annotation of
the blocking and non-blocking transport interface. The utility class tlm_quantumkeeper provides a
convenient way to access the global quantum.

3.3.3 Synchronization in loosely-timed models

An untimed model relies on the presence of explicit synchronization points (that is calls to wait or blocking
method calls) in order to pass control between initiators at predetermined points during execution. A loosely-
timed model can also benefit from explicit synchronization in order to guarantee deterministic execution, but
a loosely-timed model is able to make progress even in the absence of explicit synchronization points (calls to
wait), because each initiator will only run ahead as far as the end of the time quantum before yielding control.
A loosely-timed model can increase its timing accuracy by using synchronization-on-demand, that is, yielding
control to the scheduler before reaching the end of the time quantum.

The time quantum mechanism is not intended to ensure correct system synchronization, but rather is a
simulation mechanism that allows multiple system initiators to make progress in a scheduler-based

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 9

simulation environment. The time quantum mechanism is not an alternative to designing an explicit
synchronization scheme at the system level.

3.3.4 Approximately-timed coding style

The approximately-timed coding style is supported by the non-blocking transport interface, which is
appropriate for the use cases of architectural exploration and performance analysis. The non-blocking
transport interface provides for timing annotation and for multiple phases and timing points during the
lifetime of a transaction.

For approximately-timed modeling, a transaction is broken down into multiple phases, with an explicit timing
point marking the transition between phases. In the case of the base protocol there are exactly four timing
points marking the beginning and the end of the request and the beginning and the end of the response.
Specific protocols may need to add further timing points, which may possibly cause the loss of direct
compatibility with the generic payload.

Although it is possible to use the non-blocking transport interface with just two phases to indicate the start
and end of a transaction, the blocking transport interface is generally preferred for loosely-timed modeling.

The approximately-timed coding style cannot generally exploit temporal decoupling because of the need for
timing accuracy. Instead, each process typically executes in lock step with the SystemC scheduler. Process
interactions are annotated with specific delays. To create an approximately-timed model, it is generally
sufficient to annotate two kinds of delay: the latency of the target, and the initiation interval or accept delay of
the target. The annotated delays are implemented by making calls to the SystemC scheduler, that is,
wait(delay) or notify(delay).

3.3.5 Characterization of loosely-timed and approximately-timed coding styles

The coding styles can be characterized in terms of timing points and temporal decoupling.

Loosely-timed. Each transaction has just two timing point, marking the start and the end of the transaction.
Simulation time is used, but processes may be temporally decoupled from simulation time. Each process
keeps a tally of how far it has run ahead of simulation time, and may yield because it reaches an explicit
synchronization point or because it has consumed its time quantum.

Approximately-timed. Each transaction has multiple timing points. Processes typically need to run in lock-
step with SystemC simulation time. Delays annotated onto process interactions are implemented using
timeouts (wait) or timed event notifications.

Untimed. The notion of simulation time is unnecessary Processes yield at explicit pre-determined
synchronization points.

3.3.6 Switching between loosely-timed and approximately-timed modeling

A model may switch between the loosely-timed and approximately-timed coding style during simulation. The
idea is to run rapidly through the reset and boot sequence at the loosely-timed level, then switch to
approximately timed modeling for more detailed analysis once the simulation has reached an interesting stage.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)10

3.3.7 Cycle-accurate modeling

Cycle-accurate modeling is beyond the scope of TLM-2 at present. It is possible to create cycle-accurate
models using SystemC and TLM-1 as it stands, but the requirement for the standardization of a cycle-accurate
coding style still remains an open issue, possibly to be addressed by a future OSCI standard.

In principle only, the approximately-timed coding style might be extended to encompass cycle-accurate
modeling by defining an appropriate set of phases and rules. The TLM-2.0 release includes sufficient
machinery for this, but the details have not been worked out.

3.3.8 Blocking versus non-blocking transport interfaces

The blocking and non-blocking transport interfaces are distinct interfaces that exist in TLM-2 to support
different levels of timing detail. The blocking transport interface is only able to model the start and end of a
transaction, with the transaction being completed within a single function call. The non-blocking transport
interface allows a transaction to be broken down into multiple timing points, and typically requires multiple
function calls for a single transaction.

For interoperability, the blocking and non-blocking transport interfaces are combined into a single interface.
A model that initiates transactions may use the blocking or non-blocking transport interfaces (or both)
according to coding style. Any model that provides a TLM-2 transport interface is obliged to provide both the
blocking and non-blocking forms for maximal interoperability, although such a model is not obliged to
implement both interfaces internally.

TLM-2 provides a mechanism (the so-called convenience socket) to automatically convert incoming blocking
or non-blocking transport calls to non-blocking or blocking transport calls, respectively. Converting transport
call types does incur some cost, particularly converting an incoming non-blocking call to a blocking
implementation. However, the cost overhead is mitigated by the fact that any approximately-timed model is
likely to dominate simulation time anyway. The existence of even a single approximately-timed model is
likely to wipe out the speed benefit to be gained from using exclusively loosely-timed models.

The C++ static typing rules enforce the implementation of both interfaces, but an initiator can choose
dynamically whether to call the blocking or the non-blocking transport method. It is possible for different
initiators to call different methods, or for a given initiator to switch between blocking and non-blocking calls
on-the-fly. This standard includes rules governing the mixing and ordering of blocking and non-blocking
transport calls to the same target.

The strength of the blocking transport interface is that it allows a simplified coding style for models that are
able to complete a transaction in a single function call. The strength of the non-blocking transport interface is
that it supports the association of multiple timing points with a single transaction. In principle, either interface
supports temporal decoupling, but the speed benefits of temporal decoupling are likely to be nullified by the
presence of multiple timing points for approximately-timed models.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 11

3.3.9 Use cases and coding styles

The table below summarizes the mapping between use cases for transaction-level modeling and coding styles:

Use Case Coding style

Software application development Loosely-timed

Software performance analysis Loosely-timed

Hardware architectural analysis Loosely-timed or approximately-timed

Hardware performance verification Approximately-timed or cycle-accurate

Hardware functional verification Untimed (verification environment),
loosely-timed or approximately-timed

3.4 Initiators, targets, sockets, and bridges

The TLM-2 transport interfaces pass transactions between initiators and targets. An initiator is a module that
can initiate transactions, that is, create new transaction objects and pass them on by calling a method of one of
the core interfaces. A target is a module that acts as the final destination for a transaction. In the case of a

write transaction, an initiator (such as a processor) writes data to a target (such as a memory). In the case of a

Initiator Interconnect
component Target

Initiator
socket

Target
socket

Initiator
socket

Target
socket

Forward
path

Backward
path

Forward
path

Backward
path

Transaction
object

References to a single transaction
object are passed along the
forward and backward paths

Figure 3

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)12

read transaction, an initiator reads data from a target. An interconnect component is a module that accesses a
transaction but does act as an initiator or a target for that transaction, typical examples being arbiters and
routers.

In order to illustrate the idea, this paragraph will describe the lifetime of a typical transaction object. The
transaction object is created by an initiator and passed as an argument of a method of the transport interface
(blocking or non-blocking). That method is implemented by an interconnect component such as an arbiter,
which may read attributes of the transaction object before passing it on to a further transport call. That second
transport method is implemented by a second interconnect component, such as a router, which in turn passes
on the transaction through a third transport call to a target such as a memory, the final destination for the
transaction object. (The actual number of interconnect components will vary from transaction to transaction.
There may be none.) This sequence of method calls is known as the forward path. The transaction is executed
in the target, and the transaction object may be returned to the initiator in one of two ways, either carried with
the return from the transport method calls as they unwind, known as the return path, or passed by making
explicit transport method calls in the opposite direction from target back to initiator, known as the backward
path. This choice is determined by the return value from the non-blocking transport method. (Strictly
speaking there are two return paths corresponding to the forward and backward paths, but the meaning is
usually clear from the context.)

The forward path is the calling path by which an initiator or interconnect component makes interface method
calls forward in the direction of another interconnect component or the target. The backward path is the
calling path by which a target or interconnect component makes interface method calls back in the direction
of another interconnect component or the initiator. When using the generic payload, the forward and
backward paths should always pass through the same set of components and sockets, obviously in reverse
order.

In order to support both forward and backward paths, each connection between components requires a port
and an export, both of which have to be bound. This is facilitated by the initiator socket and the target socket.

Initiator Interconnect
component Target

Figure 4

Interconnect
component

Initiator Initiator /
Target TargetInitiator /

Target

Initiator Target

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 13

An initiator socket contains a port for interface method calls on the forward path and an export for interface
method calls on the backward path. A target socket provides the opposite. The initiator and target socket
classes overload the SystemC port binding operator to implicitly bind both forward and backward paths.

As well as the transport interfaces, the sockets also encapsulate the DMI and debug transport interfaces (see
below).

When using sockets, an initiator component will have at least one initiator socket, a target component at least
one target socket, and an interconnect component at least one of each. A component may have several sockets
transporting different transaction types, in which case a single component may act as initiator or target for
multiple independent transactions. Such a component would be a bridge between TLM-2 transactions.

In order to model a bus bridge there are two alternatives. Either model the bus bridge as an interconnect
component, or model the bus bridge as a bridge between two separate TLM-2 transactions. An interconnect
component would pass on a pointer to a single transaction object, which is the best approach for simulation
speed. A transaction bridge would require the transaction object to be copied, which gives much more
flexibility because the two transactions could have different attributes.

The use of TLM-2 sockets are recommended for maximal interoperability, convenience, and a consistent
coding style. Whilst it is possible for components to use SystemC ports and exports directly with the TLM-2
core interfaces, this is not recommended.

3.5 DMI and debug transport interfaces

The direct memory interface (DMI) and debug transport interface are specialized interfaces distinct from the
transport interface, providing direct access and debug access to an area of memory owned by a target. The
DMI and debug transport interfaces each bypass the usual path through the interconnect components used by
the transport interface. DMI is intended to accelerate regular memory transactions in a loosely-timed
simulation, whereas the debug transport interface is for debug access free of the delays or side-effects
associated with regular transactions.

The DMI has both forward (initiator-to-target) and backward (target-to-initiator) interfaces, whereas debug
only has a forward interface.

3.6 Combined interfaces and sockets

The blocking and non-blocking transport interfaces are combined with the DMI and debug transport
interfaces in the standard initiator and target sockets. All four interfaces (the two transport interfaces, DMI,
and debug) can be used in parallel to access a given target (subject to the rules described in this standard).
These combined interfaces are one of the keys to ensuring interoperability between components using the
TLM-2 standard, the other key being the generic payload.

The standard target sockets provide all four interfaces, so each target component must effectively implement
the methods of all four interfaces. However, the design of the blocking and non-blocking transport interfaces
together with the provision of convenience sockets to convert between the two means that a given target need
only implement either the blocking or the non-blocking transport method, not both, according to the speed
and accuracy requirements of the model.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)14

A given initiator may choose to call methods through any or all of the core interfaces, again according to the
speed and accuracy requirements. The coding styles mentioned above help guide the choice of an appropriate
set of interface features. Typically, a loosely-timed initiator will call blocking transport, DMI and debug,
whereas an approximately-timed initiator will call non-blocking transport and debug.

3.7 Namespaces

The TLM-2 classes shall be declared in a two top-level C++ namespaces, tlm and tlm_utils. Particular
implementations of the TLM-2 classes may choose to nest further namespaces within these two namespaces,
but such nested namespaces shall not be used in applications.

Namespace tlm contains the classes that comprise the interoperability interface for memory-mapped bus
modeling.

Namespace tlm_utils contains utility classes that are not strictly necessary for interoperability at the interface
between memory-mapped bus model, but which are nevertheless a proper part of the TLM-2 standard.

3.8 Header files and version numbers

Applications should #include the header file tlm.h from the include/tlm directory of the kit. Application
should also #include any header files they may require from the include/tlm/tlm_utils directory.

Applications compiling the simple sockets with current released versions of the OSCI proof-of-concept
simulator should define the macro SC_INCLUDE_DYNAMIC_PROCESSES before including the SystemC
header file.

The header file include/tlm/tlm_h/tlm_version.h contains a set of macros and constants that define the
version number of the OSCI TLM-2 source code. Applications may use these macros and constants. The
method tlm_release returns a string that is consistent in format with the string returned from
sc_core::sc_release.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 15

4 TLM-2 core interfaces
In addition to the core interfaces from TLM-1, TLM-2 adds blocking and non-blocking transport interfaces, a
direct memory interface (DMI), and a debug transport interface.

4.1 Transport interfaces

The transport interfaces are the primary interfaces used to transport transactions between initiators, targets and
interconnect components. Both the blocking and non-blocking transport interfaces support timing annotation
and temporal decoupling, but only non-blocking transport supports multiple phases within the lifetime of a
transaction. Blocking transport does not have an explicit phase argument, and any association between
blocking transport and the phases of the non-blocking transport interface is purely notional. Only the non-
blocking transport method returns a value indicating whether or not the return path was used.

The transport interfaces and the generic payload were designed to be used together for the fast, abstract
modeling of memory-mapped buses. The transport interfaces are templated on the transaction type allowing
them to be used separately from the generic payload, although many of the interoperability benefits would be
lost.

The rules governing memory management of the transaction object, transaction ordering, and the permitted
function calling sequence depend on the specific transaction type passed as a template argument to the
transport interface, which in turn depends on the protocol types class passed as a template argument to the
socket (if a socket is used).

4.1.1 Blocking transport interface

4.1.1.1 Introduction

The new TLM-2 blocking transport interface is intended to support the loosely-timed coding style. The
blocking transport interface is appropriate where an initiator wishes to complete a transaction with a target
during the course of a single function call, the only timing points of interest being those that mark the start
and the end of the transaction.

The blocking transport interface only uses the forward path from initiator to target.

The TLM-2 blocking transport interface has deliberate similarities with the transport interface from TLM-1,
which is still part of the TLM-2 standard, but the TLM-1 transport interface and the TLM-2 blocking
transport interface are not identical. In particular, the new b_transport method has a single transaction
argument passed by non-const reference and a second argument to annotate timing, whereas the TLM-1
transport method takes a request as a single const reference request argument, has no timing annotation, and
returns a response by value. TLM-1 assumes separate request and response objects passed by value (or const
reference), whereas TLM-2 assumes a single transaction object passed by reference, whether using the
blocking or the non-blocking TLM-2 interfaces.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)16

The b_transport method has a timing annotation argument. This single argument is used on both the call to
and the return from b_transport to indicate the time of the start and end of the transaction, respectively,
relative to the current simulation time.

4.1.1.2 Class definition

namespace tlm {

template <typename TRANS = tlm_generic_payload>
class tlm_blocking_transport_if : public virtual sc_core::sc_interface {
public:
 virtual void b_transport(TRANS& trans, sc_core::sc_time& t) = 0;
};

} // namespace tlm

4.1.1.3 The TRANS template argument

The intent is that this core interface may be used to transport transactions of any type. A specific transaction
type, tlm_generic_payload, is provided to ease interoperability between models where the precise details of
the transaction attributes are less important.

For maximum interoperability, applications should use the default transaction type tlm_generic_payload
with the base protocol. In order to model specific protocols, applications may substitute their own transaction
type. Sockets that use interfaces specialized with different transaction types cannot be bound together,
providing compile-time checking but restricting interoperability.

4.1.1.4 Rules

a) The b_transport method may call wait, directly or indirectly.

b) The b_transport method shall not be called from a method process.

c) The initiator may re-use a transaction object from one call to the next and across calls to the transport
interfaces, DMI, and the debug transport interface

d) The call to b_transport shall mark the first timing point of the transaction. The return from b_transport
shall mark the final timing point of the transaction.

e) The timing annotation argument allows the timing points to be offset from the simulation times (value
returned by sc_time_stamp()) at which the function call and return are executed.

f) The callee may modify or update the transaction object, subject to any constraints imposed by the
transaction class TRANS.

g) It is recommended that the transaction object should not contain timing information. Timing should be
annotated using the sc_time argument to b_transport.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 17

h) Whether or not b_transport is permitted to call nb_transport_fw depends on the rules associated with
the protocol. For the base protocol, a convenience socket simple_target_socket is provided, which is
able to make this conversion automatically. See clause 5.3.2 Simple sockets.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)18

4.1.1.5 Message sequence chart – blocking transport

The blocking transport method may return immediately (that is, in the current SystemC evaluation phase) or
may yield control to the scheduler and only return to the initiator at a later point in simulation time. Although
the initiator thread may be blocked, another thread in the initiator may be permitted to call b_transport
before the first call has returned, depending on the protocol.

Blocking Transport

b_transport(t, 0ns);

b_transport(t, 0ns);

Call

Return

Initiator Target

Figure 5

b_transport(t, 0ns);

b_transport(t, 0ns);

Call

Return

Simulation time = 100ns

Simulation time = 140ns wait (40ns)

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 19

4.1.1.6 Message sequence chart – temporal decoupling

A temporally decoupled initiator may run at a notional local time in advance of the current simulation time, in
which case it should pass a non-zero value for the time argument to b_transport, as shown below. The
initiator and target may each further advance the local time offset by increasing the value of the time
argument. Adding the time argument returned from the call to the current simulation time gives the notional
time at which each the transaction completes, but simulation time itself cannot advance until the initiator
thread yields.

The body of b_transport may itself call wait, in which case the local time offset should be reset to zero. In
the diagram below, the final return from the initiator happens at simulation time 140ns, but with an annotated
delay of 5ns, giving an effective local time of 145ns.

Temporal decoupling

b_transport(t, 0ns);

b_transport(t, 5ns);

Call

Return

Initiator Target

Figure 6

b_transport(t, 30ns);

b_transport(t, 5ns);

Call

Return

Simulation time = 100ns

Simulation time = 140ns wait (40ns)

Local time offset

+0ns
+5ns

b_transport(t, 20ns);

b_transport(t, 25ns);

Call

Return

+20ns
+25ns

+30ns

+5ns

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)20

4.1.1.7 Message sequence chart – the time quantum

A temporally decoupled initiator will continue to advance local time until the time quantum is exceeded. At
that point, the initiator is obliged to synchronize by suspending execution until the next quantum boundary.
This allows other initiators in the model to run and to catch up, which effectively means that the initiators
execute in turn, each being responsible for determining when to hand back control by keeping track of its own
local time. The original initiator should only run again after simulation time has advanced to the next
quantum.

The primary purpose of delays in the loosely-timed coding style is to allow each initiator to determine when
to hand back control. It is best if the model does not rely on the details of the timing in order to function
correctly.

Within each quantum, the transactions generated by a given initiator happen in strict sequential order, but
without advancing simulation time. The local time is not tracked by the SystemC scheduler.

The time quantum

b_transport(t, 950ns);

b_transport(t, 970ns);

Call

Return

Initiator Target

Figure 7

b_transport(t, 0ns);Call

Simulation time = 1us

Simulation time = 2us

wait (1us)

Local time offset

+950ns
+970ns

b_transport(t, 990ns);

b_transport(t, 1010ns);

Call

Return

+990ns
+1010ns

+0ns

Quantum = 1us

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 21

4.1.2 Non-blocking transport interface

4.1.2.1 Introduction

The non-blocking transport interface is intended to support the approximately-timed coding style. The non-
blocking transport interface is appropriate where it is desired to model the detailed sequence of interactions
between initiator and target during the course of a each transaction. In other words, to break down a
transaction into multiple phases, where each phase transition marks an explicit timing point.

By restricting the number of timing points to two, it is possible to use the non-blocking transport interface
with the loosely-timed coding style, but this is not generally recommended. For loosely-timed modeling, the
blocking transport interface is generally preferred for its simplicity. The non-blocking transport interface is
particularly suited for modeling pipelined transactions, which would be awkward using blocking transport.

The non-blocking transport interface uses both the forward path from initiator to target and the backward path
from target to initiator. There are two distinct interfaces, tlm_fw_nonblocking_transport_if and
tlm_bw_nonblocking_transport_if, for use in the two directions.

The non-blocking transport interface uses a similar argument-passing mechanism to the new blocking
transport interface in that the non-blocking transport methods passes a non-const reference to the transaction
object and a timing annotation, but there the similarity ends. The non-blocking transport method also passes a
phase to indicate the state of the transaction, and returns an enumeration value to indicate whether the return
from the function represents a phase transition.

Both blocking and non-blocking transport support timing annotation, but only non-blocking transport supports
multiple phases within the lifetime of a transaction. The blocking and non-blocking transport interface and the
generic payload were designed to be used together for the fast, abstract modeling of memory-mapped buses.
However, the transport interfaces can be used separately from the generic payload to model specific protocols.
Both the transaction type and the phase type are template parameters of the non-blocking transport interface.

4.1.2.2 Class definition

namespace tlm {

enum tlm_sync_enum { TLM_ACCEPTED, TLM_UPDATED, TLM_COMPLETED };

template <typename TRANS = tlm_generic_payload, typename PHASE = tlm_phase>
class tlm_fw_nonblocking_transport_if : public virtual sc_core::sc_interface {
public:
 virtual tlm_sync_enum nb_transport_fw(TRANS& trans, PHASE& phase, sc_core::sc_time& t) = 0;
};

template <typename TRANS = tlm_generic_payload, typename PHASE = tlm_phase>
class tlm_bw_nonblocking_transport_if : public virtual sc_core::sc_interface {
public:
 virtual tlm_sync_enum nb_transport_bw(TRANS& trans, PHASE& phase, sc_core::sc_time& t) = 0;

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)22

};

} // namespace tlm

4.1.2.3 The TRANS and PHASE template arguments

The intent is that the non-blocking transport interface may be used to transport transactions of any type and
with any number of phases and timing points. A specific transaction type, tlm_generic_payload, is provided
to ease interoperability between models where the precise details of the transaction attributes are less
important, and a specific type tlm_phase is provided for use with the base protocol.

For maximum interoperability, applications should use the default transaction type tlm_generic_payload and
the default phase type tlm_phase with the base protocol. In order to model specific protocols, applications
may substitute their own transaction type and phase type. Sockets that use interfaces specialized with different
transaction types cannot be bound together, providing compile-time checking but restricting interoperability.

4.1.2.4 The nb_transport_fw and nb_transport_bw call

a) There are two non-blocking transport methods, nb_transport_fw for use on the forward path, and
nb_transport_bw for use on the backward path. Aside from their names and calling direction these two
methods have similar semantics. In this document, the italicised term nb_transport is used to describe
both methods in situations where there is no need to distinguish between them.

b) In the case of the base protocol, the forward and backward paths should pass through exactly the same
sequence of components and sockets in opposing order.

c) nb_transport_fw shall only be called on the forward path, and nb_transport_bw shall only be called on
the backward path.

d) An nb_transport_fw call on the forward path shall under no circumstances directly or indirectly make a
call to nb_transport_bw on the associated backward path, and vice versa.

e) The nb_transport methods shall not call wait, directly or indirectly.

f) The nb_transport methods may be called from a thread process or from a method process.

g) nb_transport is not permitted to call b_transport. One solution would be to call to b_transport from a
separate thread process, spawned or notified by the original nb_transport_fw method. For the base
protocol, a convenience socket simple_target_socket is provided, which is able to make this conversion
automatically. See clause 5.3.2 Simple sockets.

h) The non-blocking transport interface is explicitly intended to support pipelined transactions. In other
words, several successive calls to nb_transport_fw from the same process could each initiate separate
transactions without having to wait for the first transaction to complete.

i) The final timing point of a transaction may be marked by a call to or a return from nb_transport either on
the forward path or the backward path.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 23

4.1.2.5 The trans argument

a) The lifetime of a given transaction object may extend beyond the return from nb_transport such that a
series of calls to nb_transport may pass a single transaction object forward and backward between
initiators, interconnect components, and targets.

b) The initiator may re-use a transaction object from one call to the next and across calls to the transport
interfaces, DMI, and the debug transport interface.

c) Since the lifetime of the transaction object may extend over several calls to nb_transport, either the caller
or the callee may modify or update the transaction object, subject to any constraints imposed by the
transaction class TRANS. For example, for the generic payload, the target may update the data array of
the transaction object in the case of a read command, but shall not update the command field. See clause
6.7 Default values and modifiability of attributes

4.1.2.6 The phase argument

a) Each call to nb_transport passes a reference to a phase object. A transition from one phase to another
marks a timing point. In the case of the base protocol, successive calls to nb_transport with the same
phase are not permitted. A timing annotation using the sc_time argument shall delay the phase transition,
if there is one.

b) The attributes of a transaction are notionally stable during each phase, only changing at the timing points
that mark phase transitions. Any change to the transaction object occurring in the middle of a phase
should only become visible to other components at the next timing point.

c) The phase argument is passed by reference. Either caller or callee may modify the phase.

d) Any change to the state of the transaction should be accompanied by a change to the phase argument such
that either caller or callee can detect the change by comparing the value of the phase argument from one
call to the next.

e) The value of the phase argument represents the current state of the protocol state machine for the
communication between caller and callee. Where a single transaction object is passed between more than
two components (initiator, interconnect, target), each caller/callee connection requires (notionally, at
least) a separate protocol state machine.

f) Whereas the transaction object has a lifetime and a scope that may extend beyond any single call to
nb_transport, the phase object is normally local to the caller. Each nb_transport call for a given
transaction may have a separate phase object. Corresponding phase transitions on different caller/callee
connections may occur at different points in simulation time.

g) The default phase type tlm_phase is specific to the base protocol. Other protocols may use or extend type
tlm_phase or may substitute their own phase type (with a corresponding loss of interoperability). See
clause 7.1 Phases.

4.1.2.7 The tlm_sync_enum return value

a) The concept of sychronization is referred to in several places. To synchronize is to yield control to the
SystemC scheduler in order that other processes may run, but has additional connotations for temporal

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)24

decoupling. This is discussed more fully elsewhere. See clause 8.1.3 General rules for processes using
temporal decoupling.

b) In principle, synchronization can be accomplished by yielding (calling wait in the case of a thread
process or returning to the kernel in the case of a method process), but a temporally decoupled initiator
should synchronize by calling the sync method of class tlm_quantum_keeper. In general, it is necessary
for an initiator to synchronize from time-to-time in order to allow other SystemC processes to run.

c) The following rules apply to both the forward and backward paths.

d) The meaning of the return value from nb_transport is fixed, and does not vary according to the
transaction type or phase type. Hence the following rules are not restricted to tlm_phase and
tlm_generic_payload, but apply to every transaction and phase type used to parameterize the non-
blocking transport interface.

e) TLM_ACCEPTED. The callee has accepted the call. The callee shall not have modified the state of the
transaction object, the phase, or the time argument during the call. In other words, TLM_ACCEPTED
indicates that the return path is not being used. A callee that is ignoring a phase transition should return
TLM_ACCEPTED. The caller should ignore the values of the nb_transport arguments following the call,
since they will not have changed. In general, the caller will have to yield before the component
containing the callee can respond to the transaction.

f) TLM_UPDATED. The callee has updated the transaction object. The callee may have modified the state
of the phase argument, may have modified the state of the transaction object, and may have increased the
value of the time argument during the call. In other words, TLM_UPDATED indicates that the return
path is being used, and the callee has advanced the state of the protocol state machine associated with the
transaction. Whether or not the callee is actually obliged to modify each of the arguments depends on the
protocol. Following the call to nb_transport, the caller should inspect the phase, transaction and time
arguments and take the appropriate action.

g) TLM_COMPLETED. The callee has updated the transaction object, and the transaction is complete.
The callee may have modified the state of the transaction object, and may have increased the value of the
time argument during the call. The callee is not obliged to have updated the phase argument, since a
transition to the final phase is implicit in the return value TLM_COMPLETED. The caller should behave
as if the final timing point of the transaction occurred at time sc_time_stamp()+t, where t is the time
argument. In other words, TLM_COMPLETED indicates that the return path is being used and the
transaction is complete. Following the call to nb_transport, the caller should inspect the transaction
object and take the appropriate action. There shall be no further transport calls associated with this
particular transaction along either the forward or backward paths. Completion in this sense does not
necessarily imply successful completion, so depending on the transaction type, the caller may need to
inspect a response status embedded in the transaction object.

h) For any of the three return values, and depending on the protocol, following the call to nb_transport the
caller may need to yield in order to allow the component containing the callee to generate a response or
to release the transaction object.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 25

4.1.2.8 tlm_sync_enum summary

tlm_sync_enum Transaction object Phase on return Timing annotation
on return

TLM_ACCEPTED Unmodified Unchanged Unchanged

TLM_UPDATED Updated Changed May be increased

TLM_COMPLETED Updated Ignored May be increased

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)26

4.1.2.9 Message sequence chart – using the backward path

The following message sequence charts illustrate various calling sequences to nb_transport. The arguments
and return value passed to and from nb_transport are shown using the notation return, phase, delay, where
return is the value returned from the function call, phase is the value of the phase argument, and delay is the
value of the sc_time argument The notation ‘-’ indicates that the value is unused.

The following message sequence charts use the phases of the base protocol as an example, that is,
BEGIN_REQ, END_REQ and so on. With the approximately-timed coding style and the base protocol, a
transaction is passed back-and-forth twice between initiator and target. For other protocols, the number of
phases and their names may be different.

If the recipient of an nb_transport call is unable immediately to calculate the next state of the transaction or
the delay to the next phase transition, it should return a value of TLM_ACCEPTED. The caller should yield
control to the scheduler and expect to receive a call to nb_transport on the opposite path when the callee is
ready to respond. Notice that in this case, unlike the loosely-timed case, the caller could be the initiator or the
target.

Transactions may be pipelined. The initiator could call nb_transport to send another transaction to the target
before having seen the final timing point of the previous transaction.

Because processes are regularly yielding control to the scheduler in order to allow simulation time to advance,
the approximately-timed coding style is expected to simulate a lot more slowly than the loosely-timed coding
style.

Using the backward path

Initiator Target

TLM_ACCEPTED, -, -

-, END_REQ, 0ns

Phase

BEGIN_REQ

END_REQ

Call

Return

-, BEGIN_REQ, 0ns

TLM_ACCEPTED, -, -

Call

Return

Simulation time = 100ns

Simulation time = 110ns

TLM_ACCEPTED, -, -

-, BEGIN_RESP, 0ns

BEGIN_RESP

Call

Return

Simulation time = 120ns

END_RESP

-, END_RESP, 0ns

TLM_COMPLETED, -, -

Call

Return

Simulation time = 130ns

Figure 8

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 27

4.1.2.10 Message sequence chart – using the return path

If the recipient of an nb_transport call can immediately calculate the next state of the transaction and the time
and the delay to the next phase transition, it may return the new state on return from nb_transport rather than
using the opposite path. The return value TLM_UPDATED is provided for the case where this timing point
does not mark the end of the transaction, and TLM_COMPLETED where it does mark the end of the
transaction. A callee can return TLM_COMPLETED at any stage to indicate to the caller that it has pre-
empted the other phases and jumped to the final phase, completing the transaction. This applies to initiator
and target alike.

With TLM_UPDATED, the callee should update the transaction and the phase and annotate the delay to the
phase transition.

With TLM_COMPLETED, the value of the phase argument should be ignored by the caller, since a transition
to the final phase is implicit.

Using the return path

Initiator TargetPhase

BEGIN_REQ

END_REQ

-, BEGIN_REQ, 0ns

TLM_UPDATED, END_REQ, 10ns

Call

Return

Simulation time = 100ns

Simulation time = 110ns

TLM_COMPLETED, END_RESP, 5ns

-, BEGIN_RESP, 0ns

BEGIN_RESP

Call

Return

Simulation time = 150ns

END_RESP Simulation time = 155ns

Figure 9

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)28

4.1.2.11 Message sequence chart – early completion

Depending on the protocol, an initiator or a target may return TLM_COMPLETED from nb_transport at any
point in order to complete the transaction early. Neither initiator nor target may make any further
nb_transport calls for this particular transaction instance. Whether or not an initiator or target is actually
permitted to shortcut a transaction in this way depends on the rules of the specific protocol.

In the diagram below, the timing annotation on the return path indicates to the initiator that the final timing
point is to occur after the given delay.

Early completion

-, BEGIN_REQ, 0ns

TLM_COMPLETED, -, 10ns

Call

Return

Phase

BEGIN_REQ

END_RESP

Initiator Target

Figure 10

Simulation time = 100ns

Simulation time = 110ns

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 29

4.1.2.12 Message sequence chart – timing annotation

An caller may annotate a delay onto an nb_transport call. This is an indication to the callee that the
corresponding phase transition should be processed as if it had been received after the given delay. An
approximately-timed callee would typically handle this situation by putting the transaction into a payload
event queue for processing when simulation time has caught up with the annotated delay.

Delays can be annotated onto calls on either the forward or backward paths.

Timing annotation

-, BEGIN_REQ, 10ns

TLM_ACCEPTED, -,-

Call

Return

Phase

BEGIN_REQ

END_REQ

Initiator Target

Figure 11

Simulation time = 100ns

Simulation time = 135ns

Simulation time = 110ns

TLM_ACCEPTED, -, -

-, END_REQ, 10ns Call

Return

Simulation time = 125ns

Payload
Event
Queue

Payload
Event
Queue

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)30

4.1.3 Timing annotation with the transport interfaces

Timing annotation is a shared feature of the blocking and non-blocking transport interfaces, expressed using
the sc_time argument to the b_transport, nb_transport_fw and nb_transport_bw methods. In the
following clause, the italicised term transport is used to denote the three methods b_transport,
nb_transport_fw, and nb_transport_bw.

4.1.3.1 The sc_time argument

a) It is recommended that the transaction object should not contain timing information. Any timing
annotation should be expressed using the sc_time argument to transport

b) The time argument shall be non-negative, and shall be expressed relative to the current simulation time
sc_time_stamp(). Where temporal decoupling is being used (typically with the loosely-timed coding
style), the timing annotation is effectively the local time offset.

c) The time argument shall apply on both the call to and return from transport (subject to the rules of the
tlm_sync_enum return value of nb_transport).

d) The nb_transport method may itself increase the value of the time argument, but shall not decrease the
value. The b_transport method may only decrease the value of the time argument in the case that it has
called wait and thus synchronized with simulation time. This rule is consistent with time not running
backward in a SystemC simulation.

e) In the following description, the recipient of the transaction on the call to transport is the callee, and the
recipient of the transaction on return from transport is the caller.

f) The recipient shall behave as if it had received the transaction at time sc_time_stamp() + t, where t is the
value of the time argument. In other words, the recipient shall behave as if the timing point that marks the
corresponding phase transition is to occur at time sc_time_stamp() + t.

g) Given a sequence of calls to transport, the times sc_time_stamp() + t at which the transactions are to be
processed may or may not be in increasing time order. In general, a caller or callee is not obliged to
generate timing annotations in any particular order. The responsibility to handle transactions with out-of-
order timing annotations lies with the recipient.

h) Upon receipt of a transaction with a timing annotation, the recipient has several available options which
reflect the modeling tradeoff between speed and accuracy. In other words, a model can be faster and less
accurate (loosely-timed) or slower and more accurate (approximately-timed). Blocking transport is
recommended for loosely-timed modeling and non-blocking transport for approximately-timed modeling.
The choice is not enforced by the transport interface, but may be documented as part of a protocol types
class or coding style.

i) If the recipient is to implement an accurate model of timing and execution order, it should ensure that the
transaction is indeed processed at the correct time relative to any other SystemC processes with which it
may interact. In SystemC, the appropriate mechanism to schedule an event at a future time is the timed
event notification. For convenience, TLM-2 provides a family of utility classes, know as payload event
queues, which can be used to queue transactions for processing at the proper simulation time according to

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 31

the natural semantics of SystemC (see clause 8.2 Payload event queue). In other words, an
approximately-timed (sic) recipient should typically put the transaction into a payload event queue.

j) If the recipient is not concerned with timing accuracy or with processing a sequence of incoming
transactions in the order given by their timing annotations, it may process each transaction immediately,
without delay. In doing so, the recipient may also choose to increase the value of the timing annotation to
model the time needed to process the transaction. In other words, a loosely-timed recipient would
typically use temporal decoupling. This scenario assumes that the system design can tolerate out-of-order
execution because of the existence of some explicit mechanism (over and above the TLM-2 interfaces) to
enforce the correct causal chain of events.

k) In any case, rather than processing the transaction directly, the recipient may pass the transaction on with
a further call to or return from a transport function without modification to the transaction and using the
same phase and timing annotation.

l) Timing annotation can also be described in terms of temporal decoupling. A non-zero timing annotation
can be considered as an invitation to the recipient to “warp time”. The recipient can choose to enter a
time warp, or it can put the transaction in a queue for later processing and yield. In a loosely-timed
model, time warping is generally acceptable. On the other hand, if the target has dependencies on other
asynchronous events, the target may have to wait for simulation time to advance before it can predict the
future state of the transaction with certainty.

m) For a general description of temporal decoupling, see clause 3.3.2 Loosely-timed coding style and
temporal decoupling

n) For a description of the quantum, see clause 8.1 Global quantum and quantum keeper

4.1.4 Migration path from TLM-1

The old TLM-1 and the new TLM-2 interfaces are both part of the TLM-2 standard. The TLM-1 blocking and
non-blocking interfaces are still useful in their own right. For example, a number of vendors have used these
interfaces in building functional verification environments for HDL designs.

The intent is that the similarity between the old and new blocking transport interfaces should ease the task of
building adapters between legacy models using the TLM-1 interfaces and the new TLM-2 interfaces.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)32

4.2 Direct memory interface

4.2.1 Introduction

The Direct Memory Interface, or DMI, provides a means by which an initiator can get direct access to an area
of memory owned by a target, thereafter accessing that memory using a direct pointer rather than through the
transport interface. The DMI offers a large potential increase in simulation speed for memory access between
initiator and target because once established it is able to bypass the normal path of multiple b_transport or
nb_transport calls from initiator through interconnect components to target.

There are two direct memory interfaces, one for calls on the forward path from initiator to target, and a second
for calls on the backward path from target to initiator. The forward path is used to request a particular mode of
DMI access (e.g. read or write) to a given address, and returns a reference to a DMI descriptor of type
tlm_dmi, which contains the bounds of the DMI region. The backward path is used by the target to invalidate
DMI pointers previously established using the forward path. The forward and backward paths may pass
through zero, one or many interconnect components, but should be identical to the forward and backward
paths for the corresponding transport calls through the same sockets.

A DMI pointer is requested by passing a transaction along the forward path. The default DMI transaction type
is tlm_generic_payload, where only the command and address attributes of the transaction object are used.
DMI follows the same approach to extension as the transport interface, that is, a DMI request may contain
ignorable extensions, but any non-ignorable extension requires the definition of a new protocol types class
(see clause 6.2.2 Define a new protocol types class containing a typedef for tlm_generic_payload).

The DMI descriptor returns latency values for use by the initiator, and so provides sufficient timing accuracy
for loosely-timed modeling.

DMI pointers may be used for debug, but the debug transport interface itself is usually sufficient because
debug traffic is usually light, and usually dominated by I/O rather than memory access. Debug transactions
are not usually on the critical path for simulation speed. If DMI pointers were used for debug, the latency
values should be ignored.

4.2.2 Class definition

namespace tlm {

class tlm_dmi
{
public:
 tlm_dmi() { init(); }

 void init();

 enum dmi_access_e {
 DMI_ACCESS_NONE = 0x00,
 DMI_ACCESS_READ = 0x01,

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 33

 DMI_ACCESS_WRITE = 0x02,
 DMI_ACCESS_READ_WRITE = DMI_ACCESS_READ | DMI_ACCESS_WRITE
 };

 unsigned char* get_dmi_ptr() const;
 sc_dt::uint64 get_start_address() const;
 sc_dt::uint64 get_end_address() const;
 sc_core::sc_time get_read_latency() const;
 sc_core::sc_time get_write_latency() const;
 dmi_access_e get_granted_access() const;
 bool is_none_allowed() const;
 bool is_read_allowed() const;
 bool is_write_allowed() const;
 bool is_read_write_allowed() const;

 void set_dmi_ptr(unsigned char* p);
 void set_start_address(sc_dt::uint64 addr);
 void set_end_address(sc_dt::uint64 addr);
 void set_read_latency(sc_core::sc_time t);
 void set_write_latency(sc_core::sc_time t);
 void set_granted_access(dmi_access_e t);
 void allow_none();
 void allow_read();
 void allow_write();
 void allow_read_write();
};

template <typename TRANS = tlm_generic_payload>
class tlm_fw_direct_mem_if : public virtual sc_core::sc_interface
{
public:
 virtual bool get_direct_mem_ptr(TRANS& trans, tlm_dmi& dmi_data) = 0;
};

class tlm_bw_direct_mem_if : public virtual sc_core::sc_interface
{
public:
 virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range, sc_dt::uint64 end_range) = 0;
};

} // namespace tlm

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)34

4.2.3 get_direct_mem_ptr method

a) The get_direct_mem_ptr method shall only be called by an initiator or by an interconnect component,
not by a target.

b) The trans argument shall pass a reference to a DMI transaction object constructed by the initiator.

c) The dmi_data argument shall be a reference to a DMI descriptor constructed by the initiator.

d) Any interconnect component should pass the get_direct_mem_ptr call along the forward path from
initiator to target. In other words, the implementation of get_direct_mem_ptr for the target socket of the
interconnect component may call the get_direct_mem_ptr method of an initiator socket.

e) Each get_direct_mem_ptr call shall follow exactly the same path from initiator to target as a
corresponding set of transport calls. In other words, each DMI request shall involve an interaction
between one initiator and one target, where those two components also serve the role of initiator and
target for a single transaction object passed through the transport interface. DMI cannot be used on a path
through a component that initiates a second transaction object, such as a non-trivial width converter. (If
DMI is an absolute requirement for simulation speed, the simulation model may need to be restructured
to permit it.)

f) Any interconnect components shall pass on the trans and dmi_data arguments in the forward direction,
the only permitted modification being to the value of the address attribute of the DMI transaction object
as described below. The address attribute of the transaction and the DMI descriptor may both be modified
on return from the get_direct_mem_ptr method, that is, when unwinding the function calls from target
back to initiator.

g) If the target is able to support DMI access to the given address, it shall set the members of the DMI
descriptor as described below and set the return value of the function to true.

h) If the target is not able to support DMI access to the given address, it shall set only the address range and
type members of the DMI descriptor as described below and set the return value of the function to false.

i) Given multiple calls to get_direct_mem_ptr, a target may grant DMI access to multiple initiators for the
same memory region at the same time. The application is responsible for synchronization and coherency.

j) Since each call to get_direct_mem_ptr can only return a single DMI pointer to a contiguous memory
region, each DMI request can only be fulfilled by a single target in practice. In other words, if a memory
region is scattered across multiple targets, then even though the address range is contiguous, each target
will likely require a separate DMI request.

4.2.4 template argument and tlm_generic_payload class

a) The tlm_fw_direct_mem_if template shall be parameterized with the type of a DMI transaction class.

b) The transaction object shall contain attributes to indicate the address for which direct memory access is
requested and the type of access requested, namely read access or write access to the given address. In the
case of the base protocol, these shall be the command and address attributes of the generic payload.

c) The default value of the TRANS template argument shall be the class tlm_generic_payload.

d) For maximal interoperability, the DMI transaction class should be the tlm_generic_payload class. The
use of non-ignorable extensions or other transaction types will restrict interoperability.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 35

e) The initiator shall be responsible for constructing and managing the DMI transaction object, and for
setting the appropriate attributes of the object before passing it as an argument to get_direct_mem_ptr.

f) The command attribute of the transaction object shall be set by the initiator to indicate the kind of DMI
access being requested, TLM_READ_COMMAND for read access, or TLM_WRITE_COMMAND for
write access.

g) The address attribute of the transaction object shall be set by the initiator to indicate the address for which
direct memory access is being requested.

h) An interconnect component passing the DMI transaction object along the forward path should decode and
where necessary modify the address attribute of the transaction exactly as it would for the corresponding
transport interface of the same socket. For example, an interconnect component may need to mask the
address (reducing the number of significant bits) according to the address width of the target and its
location in the system memory map.

i) An interconnect component need not pass on the get_direct_mem_ptr call in the event that it detects an
addressing error.

j) In the case of the base protocol, the initiator is not obliged to set any other attributes of the generic
payload aside from command and address, and the target and any interconnect components may ignore
all other attributes. In particular, the response status attribute and the DMI allowed attribute may be
ignored. The DMI allowed attribute is only intended for use with the transport interfaces.

k) The initiator may re-use a transaction object from one DMI call to the next and across calls to DMI, the
transport interfaces, and the debug transport interface.

l) If an application needs to add further attributes to a DMI transaction object for use by the target when
determining the kind of DMI access being requested, the recommended approach is to add extensions to
the generic payload rather than substituting an unrelated transaction class. For example, the DMI
transaction might include a CPU ID to allow the target to service DMI requests differently depending on
the kind of CPU making the request. In the case that such extensions are non-ignorable, this will require
the definition of a new protocol types class.

4.2.5 tlm_dmi class

a) A DMI descriptor is an object of class tlm_dmi. DMI descriptors shall be constructed by initiators, but
their members may be set by interconnect components or targets. An initiator may re-use a DMI
descriptor from one call to the next, in which case the initiator shall call the init method to re-initialize
the object between calls to get_direct_mem_ptr.

b) A DMI descriptor shall have the following attributes: the DMI pointer attribute, the granted access type
attribute, the start address attribute, the end address attribute, the read latency attribute, and the write
latency attribute,

c) Since an interconnect component is not permitted to modify the DMI descriptor as it is passed on towards
the target, the DMI descriptor shall be in its initial state when it is received by the target.

d) Method init shall initialize the members as described below.

e) The method set_dmi_ptr shall set the DMI pointer attribute to the value passed as an argument. The
method get_dmi_ptr shall return the current value of the DMI pointer attribute

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)36

f) The DMI pointer attribute shall be set by the target to point to the storage location corresponding to the
value of the start address attribute. This shall be less than or equal to the address requested in the call to
get_direct_mem_ptr. The initial value shall be 0.

g) The storage in the DMI region is represented with type unsigned char*. The storage shall have the same
organisation as the data array of the generic payload. If a target is unable to return a pointer to a memory
region with that organisation, the target is unable to support DMI and get_direct_mem_ptr should return
the value false. For a full description of how memory organization and endianness are handled in TLM-2,
see clause 6.17 Endianness

h) An interconnect component is permitted to modify the DMI pointer attribute on the return path from the
get_direct_mem_ptr function call in order to restrict the region to which DMI access is being granted.

i) The method set_granted_access shall set the granted access type attribute to the value passed as an
argument. The method get_granted_access shall return the current value of the granted access type
attribute.

j) The methods allow_none, allow_read, allow_write and allow_read_write shall set the granted access
type attribute to the value DMI_ACCESS_NONE, DMI_ACCESS_READ, DMI_ACCESS_WRITE or
DMI_ACCESS_READ_WRITE respectively.

k) The method is_none_allowed shall return true if and only if the granted access type attribute has the
value DMI_ACCESS_NONE. The method is_read_allowed shall return true if and only if the granted
access type attribute has the value DMI_ACCESS_READ or DMI_ACCESS_READ_WRITE. The
method is_write_allowed shall return true if and only if the granted access type attribute has the value
DMI_ACCESS_WRITE or DMI_ACCESS_READ_WRITE. The method is_read_write_allowed shall
return true if and only if the granted access type attribute has the value DMI_ACCESS_READ_WRITE.

l) The target shall set the granted access type attribute to the type of access being granted. A target is
permitted to respond to a request for read access by granting read or read/write access, and to a request
for write access by granting write or read/write access. An interconnect component is permitted to restrict
the granted access type by overwriting a value of DMI_ACCESS_READ_WRITE with
DMI_ACCESS_READ or DMI_ACCESS_WRITE on the return path from the get_direct_mem_ptr
function call.

m) The target should set the granted access type to DMI_ACCESS_NONE to indicate that it is not granting
read, write, or read/write access to the initiator, but is granting some other kind of access as requested by
an extension to the DMI transaction object. This value should only be used in cases where an extension to
the DMI transaction object makes the pre-defined access types read, write and read/write unnecessary or
meaningless. This value should not be used in the case of the base protocol.

n) The initiator is responsible for using only those modes of DMI access which have been granted by the
target (and possibly modified by the interconnect) using the granted access type attribute (or in cases
other than the base protocol, granted using extensions to the generic payload or using other DMI
transaction types).

o) The methods set_start_address and set_end_address shall set the start and end address attributes,
respectively, to the values passed as arguments. The methods get_start_address and get_end_address
shall return the current values of the start and end address attributes, respectively.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 37

p) The start and end address attributes shall be set by the target (or modified by the interconnect) to point to
the addresses of the first and the last bytes in the DMI region, where the meaning of the DMI region is
determined by the value returned from the get_direct_mem_ptr method (true or false).

q) A target can only grant or deny a single contiguous memory region for each get_direct_mem_ptr call. A
target can set the DMI region to a single address by having the start and end address attributes be equal,
or can set the DMI region to be arbitrarily large.

r) Having been granted DMI access of a given type to a given region, an initiator may perform access of the
given type anywhere in that region until it is invalidated. In other words, access is not restricted to the
address given in the DMI request.

s) Any interconnect components that pass on the get_direct_mem_ptr call are obliged to transform the
start and end address attributes as they do the address argument. Any transformations on the addresses in
the DMI descriptor shall occur as the descriptor is passed along the return path from the
get_direct_mem_ptr function call. For example, the target may set the start address attribute to a relative
address within the memory map known to that target, in which case the interconnect component is
obliged to transform the relative address back to an absolute address in the system memory map. The
initial values shall be 0 and the maximum value of type sc_dt::uint64, respectively.

t) An interconnect component is permitted to modify the start and end address attributes in order to restrict
the region to which DMI access is being granted, or expand the range to which DMI access is being
denied.

u) If get_direct_mem_ptr return the value true, the DMI region indicated by the start and end address
attributes is a region for which DMI access is allowed. On the other hand, if get_direct_mem_ptr return
the value false, it is a region for which DMI access is disallowed.

v) A target or interconnect component receiving two or more calls to get_direct_mem_ptr may return two
or more overlapping allowed DMI regions or two or more overlapping disallowed DMI regions.

w) A target or interconnect component shall not return overlapping DMI regions where one region is
allowed and the other is disallowed for the same access type, for example both read or read/write or both
write or read/write, without making an intervening call to invalidate_direct_mem_ptr to invalidate the
first region.

x) In other words, the definition of the DMI regions shall not be dependent upon the order in which they
were created unless the first region is invalidated by an intervening call to invalidate_direct_mem_ptr.
Specifically, the creation of a disallowed DMI region shall not be permitted to punch a hole in an existing
allowed DMI region for the same access type, or vice versa.

y) A target may disallow DMI access to the entire address space (start address attribute = 0, end address
attribute = maximum value), perhaps because the target does not support DMI access at all, in which case
an interconnect component should clip this disallowed region down to the part of the memory map
occupied by the target. Otherwise, if an interconnect component fails to clip the address range, then an
initiator would be mislead into thinking that DMI was disallowed across the entire system address space.

z) The methods set_read_latency and set_write_latency shall set the read and write latency attributes,
respectively, to the values passed as arguments. The methods get_read_latency and get_write_latency
shall return the current values of the read and write latency attributes, respectively.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)38

aa) The read and write latency attributes shall be set to the latencies of read and write memory transactions,
respectively. The initial values shall be SC_ZERO_TIME. Both interconnect components and the target
may increase the value of either latency such that the latency accumulates as the DMI descriptor is passed
back from target to initiator on return from the get_direct_mem_ptr method. One or both latencies will
be valid, depending on the value of the granted access type attribute.

bb) The initiator is responsible for respecting the latencies whenever it accesses memory using the direct
memory pointer. If the initiator chooses to ignore the latencies, this may result in timing inaccuracies.

4.2.6 invalidate_direct_mem_ptr method

a) The invalidate_direct_mem_ptr method shall only be called by a target or an interconnect component.

b) A target is obliged to call invalidate_direct_mem_ptr before any change that would modify the validity
or the access type of any existing DMI region. For example, before restricting the address range of an
existing DMI region, before changing the access type from read/write to read, or before re-mapping the
address space.

c) The start_range and end_range arguments shall be the first and last addresses of the address range for
which DMI access is to be invalidated.

d) An initiator receiving an incoming call to invalidate_direct_mem_ptr shall immediately invalidate and
discard any DMI region (previously received from a call to get_direct_mem_ptr) that overlaps with the
given address range.

e) In the case of a partial overlap, that is, only part of an existing DMI region is invalidated, an initiator may
adjust the boundaries of the existing region or may invalidate the entire region.

f) Each DMI region shall remain valid until it is explicitly invalidated by a target using a call to
invalidate_direct_mem_ptr. Each initiator may maintain a table of valid DMI regions, and continue to
use each region until it is invalidated.

g) Any interconnect components are obliged to pass on the invalidate_direct_mem_ptr call along the
backward path from target to initiator, decoding and where necessary modifying the address arguments as
they would for the corresponding transport interface. Because the transport interface transforms the
address on the forward path and DMI on the backward path, the transport and DMI transformations
should be the inverse of one another.

h) Given a single invalidate_direct_mem_ptr call from a target, an interconnect component may make
multiple invalidate_direct_mem_ptr calls to initiators. Since there may be multiple initiators each
getting direct memory pointers to the same target, a safe implementation is for an interconnect
component to call invalidate_direct_mem_ptr for every initiator.

i) An interconnect component can invalidate all direct memory pointers in an initiator by setting
start_range to 0 and end_range to the maximum value of the type sc_dt::uint64.

j) An implementation of invalidate_direct_mem_ptr shall not call get_direct_mem_ptr, directly or
indirectly.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 39

4.2.7 Optimization using a DMI Hint

a) The DMI hint is a mechanism to optimize simulation speed by avoiding the need to repeatedly poll for
DMI access. Instead of calling get_direct_mem_ptr to check for the availability of a DMI pointer, an
initiator can check the DMI hint of a normal transaction passed through the transport interface.

b) The generic payload provides a DMI hint. User-defined transactions could implement a similar
mechanism, in which case the target should set the value of the DMI hint appropriately.

c) Use of the DMI hint is optional. An initiator is free to ignore the DMI hint of the generic payload.

d) For an initiator wishing to take advantage of the DMI hint, the recommended sequence of actions is as
follows:

 i. The initiator should check the address against its cache of valid DMI regions

 ii. If there is no existing DMI pointer, the initiator should perform a normal transaction through the
transport interface

 iii. Following that, the initiator should check the DMI hint of the transaction

 iv. If the hint indicates DMI is allowed, the initiator should call get_direct_mem_ptr

 v. The initiator should modify its cache of valid DMI regions according to the values returned from the
call.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)40

4.3 Debug transport interface

4.3.1 Introduction

The debug transport interface provides a means to read and write to storage in a target, over the same forward
path from initiator to target as is used by the transport interface, but without any of the delays, waits, event
notifications or side effects associated with a regular transaction. In other words, the debug transport interface
is non-intrusive. Because the debug transport interface follows the same path as the transport interface, the
implementation of the debug transport interface can perform the same address translation as for regular
transactions.

For example, the debug transport interface could permit a software debugger attached to an ISS to peek or
poke an address in the memory of the simulated system from the point of view of the simulated CPU. The
debug transport interface could also allow an initiator to take a snapshot of system memory contents during
simulation for diagnostic purposes, or to initialize some area of system memory at the end of elaboration.

The default debug transaction type is tlm_generic_payload, where only the command, address, data length
and data pointer attributes of the transaction object are used. Debug transactions follow the same approach to
extension as the transport interface, that is, a debug transaction may contain ignorable extensions, but any
non-ignorable extension requires the definition of a new protocol types class (see clause 6.2.2 Define a new
protocol types class containing a typedef for tlm_generic_payload).

4.3.2 Class definition

namespace tlm {

template <typename TRANS = tlm_generic_payload>
class tlm_transport_dbg_if : public virtual sc_core::sc_interface
{
public:
 virtual unsigned int transport_dbg(TRANS& trans) = 0;
};

} // namespace tlm

4.3.3 TRANS template argument and tlm_generic_payload class

a) The tlm_transport_dbg_if template shall be parameterized with the type of a debug transaction class.

b) The debug transaction class shall contain attributes to indicate to the target the command, address, data
length and date pointer for the debug access. In the case of the base protocol, these shall be the
corresponding attributes of the generic payload.

c) The default value of the TRANS template argument shall be the class tlm_generic_payload.

d) For maximal interoperability, the debug transaction class should be tlm_generic_payload. The use of
non-ignorable extensions or other transaction types will restrict interoperability.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 41

e) If an application needs to add further attributes to a debug transaction, the recommended approach is to
add extensions to the generic payload rather than substituting an unrelated transaction class. In the case
that such extensions are non-ignorable, this will require the definition of a new protocol types class.

4.3.4 Rules

a) Calls to transport_dbg shall follow the same forward path as the transport interface used for normal
transactions.

b) The trans argument shall pass a reference to a debug transaction object.

c) The initiator shall be responsible for constructing and managing the debug transaction object, and for
setting the appropriate attributes of the object before passing it as an argument to transport_dbg.

d) The command attribute of the transaction object shall be set by the initiator to indicate the kind of debug
access being requested; TLM_READ_COMMAND for read access to the target, or
TLM_WRITE_COMMAND for write access to the target.

e) The address attribute shall be set by the initiator to the first address in the region to be read or written.

f) An interconnect component passing the debug transaction object along the forward path should decode
and where necessary modify the address attribute of the transaction object exactly as it would for the
corresponding transport interface of the same socket. For example, an interconnect component may need
to mask the address (reducing the number of significant bits) according to the address width of the target
and its location in the system memory map.

g) An interconnect component need not pass on the transport_dbg call in the event that it detects an
addressing error.

h) The address attribute may be modified several times if a debug payload is forwarded through several
interconnect components. When the debug payload is returned to the initiator, the original value of the
address attribute may have been overwritten.

i) The data length attribute shall be set by the initiator to the number of bytes to be read or written. This
may be 0, in which case the target shall not read or write any bytes.

j) The data pointer attribute shall be set by the initiator to the address of an array from which values are to
be copied to the target (for a write), or to which values are to be copied from the target (for a read). This
array shall be allocated by the initiator, and shall not be deleted before the return from transport_dbg.
The size of the array shall be at least equal to the value of the data length attribute.

k) The implementation of transport_dbg in the target shall read or write the given number of bytes using
the given address (after address translation through the interconnect), if it is able.

l) The data array shall have the same organisation as the data array of the generic payload when used with
the transport interface. The implementation of transport_dbg shall be responsible for converting
between the organisation of the local data storage within the target and the generic payload organisation.

m) In the case of the base protocol, the initiator is not obliged to set any other attributes of the generic
payload aside from command, address, data length and data pointer, and the target and any interconnect
components may ignore all other attributes. In particular, the response status attribute may be ignored.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)42

n) The initiator may re-use a transaction object from one call to the next and across calls to the debug
transport interface, the transport interfaces, and DMI.

o) transport_dbg shall return a count of the number of bytes actually read or written, which may be less
than num_bytes. If the target is not able to perform the operation, it shall return a value of 0.

p) transport_dbg shall not call wait, shall not create any event notifications, and shall not have any side
effects on the target or any interconnect component.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 43

5 Combined interfaces and sockets

5.1 Combined interfaces

5.1.1 Introduction

The combined forward and backward transport interfaces group the core TLM-2 interfaces for use by the
initiator and target sockets. Note that the combined interfaces include the transport, DMI and debug transport
interfaces, but do not include any TLM-1 core interfaces. The forward interface provides method calls on the
forward path from initiator socket to target socket, and the backwards interface on the backward path from
target socket to initiator socket. Neither the blocking transport interface nor the debug transport interface
require a backward calling path.

It would be technically possible to define new socket class templates unrelated to the standard initiator and
target sockets and then to instantiate those class templates using the combined interfaces as template
arguments, but for the sake of interoperability this is not recommended. On the other hand, deriving new
socket classes from the standard sockets is recommended for convenience.

The combined interface templates are parameterized with a protocol types class that defines the types used by
the forward and backward interfaces, namely the payload type and the phase type. A protocol types class is
associated with a specific protocol. The default protocol type is the class tlm_base_protocol_types. See
clause 7.2 Base protocol.

5.1.2 Class definition

namespace tlm {

// The default protocol types class:
struct tlm_base_protocol_types
{
 typedef tlm_generic_payload tlm_payload_type;
 typedef tlm_phase tlm_phase_type;
};

// The combined forward interface:
template< typename TYPES = tlm_base_protocol_types >
class tlm_fw_transport_if
 : public virtual tlm_fw_nonblocking_transport_if<typename TYPES::tlm_payload_type ,

typename TYPES::tlm_phase_type>
 , public virtual tlm_blocking_transport_if< typename TYPES::tlm_payload_type>
 , public virtual tlm_fw_direct_mem_if< typename TYPES::tlm_payload_type>
 , public virtual tlm_transport_dbg_if< typename TYPES::tlm_payload_type>
{};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)44

// The combined backward interface:
template < typename TYPES = tlm_base_protocol_types >
class tlm_bw_transport_if
 : public virtual tlm_bw_nonblocking_transport_if<typename TYPES::tlm_payload_type ,

typename TYPES::tlm_phase_type >
 , public virtual tlm_bw_direct_mem_if
{};

} // namespace tlm

5.2 Initiator and target sockets

5.2.1 Introduction

A socket combines a port with an export. An initiator socket has a port for the forward path and an export for
the backward path, whilst a target socket has an export for the forward path and a port for the backward path.
The sockets also overload the SystemC port binding operators to bind both the port and export to the export
and port in the opposing socket. When binding sockets hierarchically, parent to child or child to parent, it is
important to carefully consider the binding order.

Both the initiator and target sockets are coded using a C++ inheritance hierarchy. Only the most derived
classes tlm_initiator_socket and tlm_target_socket are typically used directly by applications. These two
sockets are parameterized with a protocol types class that defines the types used by the forward and backward
interfaces. Sockets can only be bound together if they have the identical protocol type. The default protocol
type is the class tlm_base_protocol_types. If an application defines a new protocol it should instantiate
combined interface templates with a new protocol types class, whether or not the new protocol is based on the
generic payload.

The initiator and target sockets provide the following benefits:

a) They group the transport, direct memory and debug transport interfaces for both the forward and
backward paths together into a single object.

b) They provide methods to bind port and export of both the forward and backward paths in a single call.

c) They offer strong type checking when binding sockets parameterized with incompatible protocol types.

d) They include a bus width parameter that may be used to interpret the transaction.

The socket classes tlm_initiator_socket and tlm_target_socket belong to the interoperability layer the TLM-
2 standard. In addition, there are a family of derived socket classes provided in the utilities namespace,
collectively known as convenience sockets.

5.2.2 Class definition

namespace tlm {

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 45

// Abstract base class for initiator sockets
template <
 unsigned int BUSWIDTH = 32,
 typename FW_IF = tlm_fw_transport_if<>,
 typename BW_IF = tlm_bw_transport_if<>
>
class tlm_base_initiator_socket_b
{
public:
 virtual ~tlm_base_initiator_socket_b() {}

 virtual sc_core::sc_port_b<FW_IF> & get_base_port() = 0;
 virtual BW_IF & get_base_interface() = 0;
 virtual sc_core::sc_export<BW_IF> & get_base_export() = 0;
};

// Abstract base class for target sockets
template <
 unsigned int BUSWIDTH = 32,
 typename FW_IF = tlm_fw_transport_if<>,
 typename BW_IF = tlm_bw_transport_if<>
>
class tlm_base_target_socket_b
{
public:
 virtual ~tlm_base_target_socket_b();

 virtual sc_core::sc_port_b<BW_IF> & get_base_port() = 0;
 virtual sc_core::sc_export<FW_IF> & get_base_export() = 0;
 virtual FW_IF & get_base_interface() = 0;
};

// Base class for initiator sockets, providing binding methods
template <
 unsigned int BUSWIDTH = 32,
 typename FW_IF = tlm_fw_transport_if<>,
 typename BW_IF = tlm_bw_transport_if<>,
 int N = 1,
 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND
>
class tlm_base_initiator_socket : public tlm_base_initiator_socket_b<BUSWIDTH, FW_IF, BW_IF>,

public sc_core::sc_port<FW_IF, N, POL>
{

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)46

public:
 typedef FW_IF fw_interface_type;
 typedef BW_IF bw_interface_type;
 typedef sc_core::sc_port<fw_interface_type, N, POL> port_type;
 typedef sc_core::sc_export<bw_interface_type> export_type;
 typedef tlm_base_target_socket<BUSWIDTH, fw_interface_type, bw_interface_type, N ,POL >

target_socket_type;
 typedef tlm_base_target_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

base_target_socket_type;
 typedef tlm_base_initiator_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

base_type;

 tlm_base_initiator_socket();
 explicit tlm_base_initiator_socket(const char* name);

 unsigned int get_bus_width() const;

 void bind(base_target_socket_type& s);
 void operator() (base_target_socket_type& s);
 void bind(base_type& s);
 void operator() (base_type& s);
 void bind(bw_interface_type& ifs);
 void operator() (bw_interface_type& s);

 // Implementation of pure virtual functions of base class
 virtual sc_core::sc_port_b<FW_IF> & get_base_port() { return *this; }
 virtual BW_IF & get_base_interface() { return m_export; }
 virtual sc_core::sc_export<BW_IF> & get_base_export() { return m_export; }

protected:
 export_type m_export;
};

// Base class for target sockets, providing binding methods
template <
 unsigned int BUSWIDTH = 32,
 typename FW_IF = tlm_fw_transport_if<>,
 typename BW_IF = tlm_bw_transport_if<>,
 int N = 1,
 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND
>
class tlm_base_target_socket : public tlm_base_target_socket_b<BUSWIDTH, FW_IF, BW_IF>,
 public sc_core::sc_export<FW_IF>
{
public:

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 47

 typedef FW_IF fw_interface_type;
 typedef BW_IF bw_interface_type;
 typedef sc_core::sc_port<bw_interface_type, N, POL> port_type;
 typedef sc_core::sc_export<fw_interface_type> export_type;
 typedef tlm_base_initiator_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

base_initiator_socket_type;
 typedef tlm_base_initiator_socket<BUSWIDTH, fw_interface_type, bw_interface_type, N, POL>

initiator_socket_type;
 typedef tlm_base_target_socket_b<BUSWIDTH, fw_interface_type, bw_interface_type>

base_type;

 tlm_base_target_socket();
 explicit tlm_base_target_socket(const char* name);

 unsigned int get_bus_width() const;

 void bind(base_initiator_socket_type& s);
 void operator() (base_initiator_socket_type& s);
 void bind(base_type& s);
 void operator() (base_type& s);
 void bind(fw_interface_type& ifs);
 void operator() (fw_interface_type& s);

 int size() const;
 bw_interface_type* operator-> ();
 bw_interface_type* operator[] (int i);

 // Implementation of pure virtual functions of base class
 virtual sc_core::sc_port_b<BW_IF> & get_base_port() { return m_port; }
 virtual FW_IF & get_base_interface() { return *this; }
 virtual sc_core::sc_export<FW_IF> & get_base_export() { return *this; }

protected:
 port_type m_port;
};

// Principle initiator socket, parameterized with protocol types class
template <
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm_base_protocol_types,
 int N = 1,
 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND
>
class tlm_initiator_socket : public tlm_base_initiator_socket <
 BUSWIDTH, tlm_fw_transport_if<TYPES>, tlm_bw_transport_if<TYPES>, N, POL>

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)48

{
public:
 tlm_initiator_socket();
 explicit tlm_initiator_socket(const char* name);
};

// Principle target socket, parameterized with protocol types class
template <
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm_base_protocol_types,
 int N = 1,
 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND
>
class tlm_target_socket : public tlm_base_target_socket <
 BUSWIDTH, tlm_fw_transport_if<TYPES>, tlm_bw_transport_if<TYPES>, N, POL>
{
public:
 tlm_target_socket();
 explicit tlm_target_socket(const char* name);
};

} // namespace tlm

5.2.3 Classes tlm_base_initiator_socket_b and tlm_base_target_socket_b

a) The abstract base classes tlm_base_initiator_socket_b and tlm_base_target_socket_b declare pure
virtual functions that should be overridden an any derived class to return the port, export and interface
objects associated with the socket.

b) These sockets are not typically used directly by applications.

5.2.4 Classes tlm_base_initiator_socket and tlm_base_target_socket

a) For class tlm_base_initiator_socket, the constructor with a name argument shall pass the character
string argument to the constructor belonging to the base class sc_port to set the string name of the
instance in the module hierarchy, and shall also pass the same character string to set the string name of
the corresponding sc_export on the backward path, calling sc_gen_unique_name to avoid name clashes
and adding the suffix “_export”. For example, the call tlm_initiator_socket(“foo”) would set the port
name to “foo” and the export name to “foo_export”. In the case of the default constructor, the names
shall be created by calling sc_gen_unique_name("tlm_base_initiator_socket") for the port, and
sc_gen_unique_name("tlm_initiator_socket_export") for the export.

b) For class tlm_base_target_socket, the constructor with a name argument shall pass the character string
argument to the constructor belonging to the base class sc_export to set the string name of the instance in
the module hierarchy, and shall also pass the same character string to set the string name of the

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 49

corresponding sc_port on the backward path, calling sc_gen_unique_name to avoid name clashes and
adding the suffix “_port”. For example, the call tlm_target_socket(“foo”) would set the export name to
“foo” and the port name to “foo_port”. In the case of the default constructor, the names shall be created
by calling sc_gen_unique_name("tlm_base_target_socket") for the export, and
sc_gen_unique_name("tlm_target_socket_port") for the port.

c) The method get_bus_width shall return the value of the BUSWIDTH template argument.

d) Template argument BUSWIDTH shall determine the word length for each individual data word
transferred through the socket, expressed as the number of bits in each word. For a burst transfer,
BUSWIDTH shall determine the number of bits in each beat of the burst. The precise interpretation of
this attribute shall depend on the transaction type. For the meaning of BUSWIDTH with the generic
payload, see clause 6.11 Data length attribute.

e) When binding socket-to-socket, the two sockets shall have identical values for the BUSWIDTH template
argument. Executable code in the initiator or target may get and act on the BUSWIDTH.

f) Each of the methods bind and operator() that take a socket as an argument shall bind the socket instance
to which the method belongs to the socket instance passed as an argument to the method.

g) Each of the methods bind and operator() that take an interface as an argument shall bind the export of
the socket instance to which the method belongs to the channel instance passed as an argument to the
method. (A channel is the SystemC term for a class that implements an interface.)

h) When binding initiator socket to target socket, the bind method and operator() shall each bind the port
of the initiator socket to the export of the target socket, and the port of the target socket to the export of
the initiator socket. This is for use when binding socket-to-socket at the same level in the hierarchy.

i) An initiator socket can be bound to a target socket by calling the bind method or operator() of either
socket, with precisely the same effect.

j) When binding initiator socket to initiator socket or target socket to target socket, the bind method and
operator() shall each bind the port of one socket to the port of the other socket, and the export of one
socket to the export of the other socket. This is for use in hierarchical binding, that is, when binding child
socket to parent socket, or parent socket to child socket, passing transactions up or down the module
hierarchy.

k) For hierarchical binding, it is necessary to bind sockets in the correct order. When binding initiator socket
to initiator socket, the socket of the child must be bound to the socket of the parent. When binding target
socket to target socket, the socket of the parent must be bound to the socket of the child. This rule is
consistent with the fact the tlm_base_initiator_socket is derived from sc_port, and
tlm_base_target_socket from sc_export. Port must be bound to port going up the hierarchy, port-to-
export across the top, and export-to-export going down the hierarchy.

l) In order for two sockets of classes tlm_base_initiator_socket and tlm_base_target_socket to be bound
together, they must share the same forward and backward interface types and bus widths

m) The method size of the target socket shall call method size of the port in the target socket (on the
backward path), and shall return the value returned by size of the port.

n) The method operator-> of the target socket shall call method operator-> of the port in the target socket
(on the backward path), and shall return the value returned by operator-> of the port.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)50

o) The method operator[] of the target socket shall call method operator[] of the port in the target socket
(on the backward path) with the same argument, and shall return the value returned by operator[] of the
port.

p) Class tlm_base_initiator_socket and class tlm_base_target_socket each act as multi-sockets, that is, a
single initiator socket may be bound to multiple target sockets, and a single target socket may be bound
to multiple initiator sockets. The two class templates have template parameters specifying the number of
bindings and the port binding policy, which are used within the class implementation to parameterize the
associated sc_port template instantiation.

q) If an object of class tlm_base_initiator_socket or tlm_base_target_socket is bound multiple times, then
the method operator[] can be used to address the corresponding object to which the socket is bound. The
index value is determined by the order in which the methods bind or operator() were called to bind the
sockets. However, any incoming interface method calls received by such a socket will be anonymous in
the sense that there is no mechanism provided to identify the caller. On the other hand, such a mechanism
is provided by the convenience sockets. See clause 5.3.4 Multi-sockets.

r) For example, consider a socket bound to two separate targets. The calls socket[0]->nb_transport_fw(...)
and socket[1]->nb_transport_fw() would address the two targets, but there is no way to identify the
caller of in incoming nb_transport_bw() method from one of those two targets.

s) The implementations of the virtual methods get_base_port and get_base_export shall return the port
and export objects of the socket, respectively. The implementation of the virtual method
get_base_interface shall return the export object in the case of the initiator port, or the socket object
itself in the case of the target socket.

5.2.5 Classes tlm_initiator_socket and tlm_target_socket

a) The socket tlm_initiator_socket and tlm_target_socket take a protocol types class as a template
parameter. These sockets (or convenience sockets derived from them) should typically be used by an
application rather than the base sockets.

b) In order for two sockets of classes tlm_initiator_socket and tlm_target_socket to be bound together,
they must share the same protocol types class (default tlm_base_protocol_types) and bus widths. Strong
type checking between sockets can be achieved by defining a new protocol types class for each distinct
protocol, whether or not that protocol is based on the generic payload.

Example

#include <systemc>
#include "tlm.h"
using namespace sc_core;
using namespace std;

struct Initiator: sc_module, tlm::tlm_bw_transport_if<> // Initiator implements the bw interface
{

tlm::tlm_initiator_socket<32> init_socket; // Protocol types default to base protocol

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 51

SC_CTOR(Initiator) : init_socket("init_socket") {
SC_THREAD(thread);
init_socket.bind(*this); // Initiator socket bound to the initiator itself

}

void thread() { // Process generates one dummy transaction
tlm::tlm_generic_payload trans;
sc_time delay = SC_ZERO_TIME;
init_socket->b_transport(trans, delay);

}

virtual tlm::tlm_sync_enum nb_transport_bw(
tlm::tlm_generic_payload& trans,
tlm::tlm_phase& phase,
sc_core::sc_time& t) {
return tlm::TLM_COMPLETED; // Dummy implementation

}

virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range, sc_dt::uint64 end_range)
{ } // Dummy implementation

};

struct Target: sc_module, tlm::tlm_fw_transport_if<> // Target implements the fw interface
{

tlm::tlm_target_socket<32> targ_socket; // Protocol types default to base protocol

SC_CTOR(Target) : targ_socket("targ_socket") {
targ_socket.bind(*this); // Target socket bound to the target itself

}

virtual tlm::tlm_sync_enum nb_transport_fw(
tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_core::sc_time& t) {

return tlm::TLM_COMPLETED; // Dummy implementation
}

virtual void b_transport(tlm::tlm_generic_payload& trans, sc_time& delay)
{ } // Dummy implementation

virtual bool get_direct_mem_ptr(tlm::tlm_generic_payload& trans, tlm::tlm_dmi& dmi_data)
{ return false; } // Dummy implementation

virtual unsigned int transport_dbg(tlm::tlm_generic_payload& trans)
{ return 0; } // Dummy implementation

};

SC_MODULE(Top1) // Showing a simple non-hierarchical binding of initiator to target

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)52

{
Initiator *init;
Target *targ;

SC_CTOR(Top1) {
init = new Initiator("init");
targ = new Target("targ");
init->init_socket.bind(targ->targ_socket); // Bind initiator socket to target socket

}
};

struct Parent_of_initiator: sc_module // Showing hierarchical socket binding
{

tlm::tlm_initiator_socket<32> init_socket;

Initiator* initiator;

SC_CTOR(Parent_of_initiator) : init_socket("init_socket") {
initiator = new Initiator("initiator");
initiator->init_socket.bind(init_socket); // Bind initiator socket to parent initiator socket

}
};

struct Parent_of_target: sc_module
{

tlm::tlm_target_socket<32> targ_socket;

Target* target;

SC_CTOR(Parent_of_target) : targ_socket("targ_socket") {
target = new Target("target");
targ_socket.bind(target->targ_socket); // Bind parent target socket to target socket

}
};

SC_MODULE(Top2)
{

Parent_of_initiator *init;
Parent_of_target *targ;

SC_CTOR(Top2) {
init = new Parent_of_initiator("init");
targ = new Parent_of_target("targ");
init->init_socket.bind(targ->targ_socket); // Bind initiator socket to target socket at top level

}
};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 53

5.3 Convenience sockets

5.3.1 Introduction

There are a family of convenience sockets, each implementing some additional functionality to make
component models easier to write. The convenience sockets are derived from the classes
tlm_initiator_socket and tlm_target_socket. They are not part of the TLM-2 interoperability layer, but are
to be found in the namespace tlm_utils.

The convenience sockets are summarized in the following table.

Register callbacks? The socket provides methods to register callbacks for incoming interface method calls,
rather than having the socket be bound to an object that implements the corresponding interfaces.

Multi-ports? The socket class template provides number-of-bindings and binding policy template arguments
such that a single initiator socket can be bound to multiple target sockets and vice versa.

b – nb conversion? The target socket is able to convert incoming calls to b_transport into nb_transport_fw
calls, and vice versa.

Tagged? Incoming interface method calls are tagged with an id to indicate the socket through which they
arrived

Hierarchical binding? The socket supports hierarchical initiator-socket-to-initiator-socket or target-socket-
to-target-socket binding.

Class Register
callbacks?

Multi-
ports?

b / nb
conversion?

Tagged? Hierarchical
binding?

tlm_initiator_socket no yes - no yes

tlm_target_socket no yes no no yes

simple_initiator_socket yes no - no no

simple_initiator_socket_tagged yes no - yes no

simple_target_socket yes no yes no no

simple_target_socket_tagged yes no yes yes no

passthrough_target_socket yes no no no no

passthrough_target_socket_tagged yes no no yes no

multi_passthrough_initiator_socket yes yes - yes yes

multi_passthrough_target_socket yes yes no yes yes

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)54

5.3.2 Simple sockets

5.3.2.1 Introduction

The simple sockets are so-called because they are intended to be simple to use. They are derived from the
interoperability layer sockets tlm_initiator_socket and tlm_target_socket, so can be bound directly to
sockets of those types.

Instead of having to bind a socket to an object that implements the corresponding interface, each simple
socket provides methods for registering callback methods. Those callbacks are in turn called whenever an
incoming interface method call arrives. Callback methods may be registered for each of the interfaces
supported by the socket.

The user of a simple socket may register a callback for every interface method, but is not obliged to do so. In
particular, for the simple target socket, the user need only register one of b_transport and nb_transport_fw,
in which case incoming calls to the unregistered method will be converted automatically to calls to the
registered method. This conversion process is non-trivial, and is dependent upon the rules of the base protocol
being respected by the initiator and target.. The passthrough_target_socket is a variant of the
simple_target_socket that does not support conversion between blocking and non-blocking calls.

The current implementation of simple sockets makes use of dynamic processes. Hence, when compiling
applications that use simple sockets with current released versions of the OSCI proof-of-concept simulator, it
is necessary to defined the macro SC_INCLUDE_DYNAMIC_PROCESSES before including the SystemC
header file.

5.3.2.2 Class definition

namespace tlm_utils {

template <
 typename MODULE,
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm::tlm_base_protocol_types
>
class simple_initiator_socket : public tlm::tlm_initiator_socket<BUSWIDTH, TYPES>
{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;

 explicit simple_initiator_socket(const char* n = "simple_initiator_socket");

 void register_nb_transport_bw(

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 55

 MODULE* mod,
 sync_enum_type (MODULE::*cb)(transaction_type&, phase_type&, sc_core::sc_time&));

 void register_invalidate_direct_mem_ptr(
 MODULE* mod,
 void (MODULE::*cb)(sc_dt::uint64, sc_dt::uint64));
};

template <
 typename MODULE,
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm::tlm_base_protocol_types
>
class simple_target_socket : public tlm::tlm_target_socket<BUSWIDTH, TYPES>
{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;

 explicit simple_target_socket(const char* n = "simple_target_socket");

 tlm::tlm_bw_transport_if<TYPES> * operator ->();

 void register_nb_transport_fw(
 MODULE* mod,
 sync_enum_type (MODULE::*cb)(transaction_type&, phase_type&, sc_core::sc_time&));

 void register_b_transport(
 MODULE* mod,
 void (MODULE::*cb)(transaction_type&, sc_core::sc_time&));

 void register_transport_dbg(
 MODULE* mod,
 unsigned int (MODULE::*cb)(transaction_type&));

 void register_get_direct_mem_ptr(
 MODULE* mod,
 bool (MODULE::*cb)(transaction_type&, tlm::tlm_dmi&));
};

template <
 typename MODULE,
 unsigned int BUSWIDTH = 32,

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)56

 typename TYPES = tlm::tlm_base_protocol_types
>
class passthrough_target_socket : public tlm::tlm_target_socket<BUSWIDTH, TYPES>
{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;

 explicit passthrough_target_socket(const char* n = "passthrough_target_socket");

 void register_nb_transport_fw(
 MODULE* mod,
 sync_enum_type (MODULE::*cb)(transaction_type&, phase_type&, sc_core::sc_time&));

 void register_b_transport(
 MODULE* mod,
 void (MODULE::*cb)(transaction_type&, sc_core::sc_time&));

 void register_transport_dbg(
 MODULE* mod,
 unsigned int (MODULE::*cb)(transaction_type&));

 void register_get_direct_mem_ptr(
 MODULE* mod,
 bool (MODULE::*cb)(transaction_type&, tlm::tlm_dmi&));
};

} // namespace tlm_utils

5.3.2.3 Rules

a) A simple initiator socket, simple target socket or passthrough target socket can only implement incoming
interface method calls by registering callbacks, not by being bound hierarchically to another socket.

b) A simple initiator socket can be bound to a simple target socket by calling the bind method or operator()
of either socket, with precisely the same effect.

c) A target is not obliged to register a b_transport callback with a simple target socket provided it has
registered an nb_transport_fw callback, in which case an incoming b_transport call will automatically
cause the target to call the method registered for nb_transport_fw. In this case, the method registered for
nb_transport_fw shall implement with the rules of the base protocol. See clause 5.3.2.4

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 57

Simple target socket b/nb conversion

d) A target is not obliged to register an nb_transport_fw callback with a simple target socket provided it
has registered a b_transport callback, in which case an incoming nb_transport_fw call will
automatically cause the target to call the method registered for b_transport and subsequently to call
nb_transport_bw on the backward path.

e) If a target does not register either a b_transport or an nb_transport_fw callback with a simple target
socket, this will result in a run-time error if and only if the corresponding method is called

f) A target should register b_transport and nb_transport_fw callbacks with a passthrough target socket.
Not doing so will result in a run-time error if and only if the corresponding method is called.

g) A target is not obliged to register a transport_dbg callback with a simple target socket or a passthrough
target socket, in which case an incoming transport_dbg call shall return with a value of 0.

h) A target is not obliged to register a get_direct_mem_ptr callback with a simple target socket or a
passthrough target socket, in which case an incoming get_direct_mem_ptr call shall return with a value
of false.

i) An initiator should register an nb_transport_bw callback with a simple initiator socket. Not doing so
will result in a run-time error if and only if the nb_transport_bw method is called.

j) An initiator is not obliged to register an invalidate_direct_mem_ptr callback with a simple initiator
socket, in which case an incoming get_direct_mem_ptr call shall be ignored.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)58

5.3.2.4 Simple target socket b/nb conversion

a) In the case that a b_transport or nb_transport_fw method is called through a socket of class
simple_target_socket but no corresponding callback is registered, the simple target socket will act as an
adapter between the two interfaces.

b) When the simple target socket acts as an adapter, it shall honor the rules of the base protocol both from
the point of view of the initiator and from the point of view of the implementation of the b_transport or
nb_transport_fw methods in the target. See clause 7.2 Base protocol

c) The socket shall pass through the given transaction object without modification and shall not construct a
new transaction object.

d) In the case that only the nb_transport_fw callback has been registered by the target, the initiator is not
permitted to call nb_transport_fw while there is an earlier b_transport call from the initiator still in
progress. This is a limitation of the current implementation of the simple target socket.

e) Figure 12 shows the case where an initiator calls nb_transport_fw, but the target only registers a
b_transport callback with the simple target socket. The initiator sends BEGIN_REQ, to which the
socket returns TLM_ACCEPTED. The socket then calls b_transport, and on return sends BEGIN_RESP
back to the initiator, to which the initiator returns TLM_COMPLETED. Since it is not permissible in
SystemC to call a blocking method directly from a non-blocking method, the socket is obliged to call
b_transport from a separate internal thread process, not directly from nb_transport_fw.

f) Figure 12 shows just one possible scenario. On the final transition, the initiator could have returned
TLM_ACCEPTED, in which case the socket would expect to receive a subsequent END_RESP from the
initiator. Also, the target could have called wait from within b_transport.

Simple target socket nb/b adapter

Initiator Target

nb_transport_fw(t, BEGIN_REQ, 5ns)

TLM_ACCEPTED

Call

Return

Simulation time = 100ns

Simulation time = 105ns

TLM_COMPLETED

nb_transport_bw(t, BEGIN_RESP, 0ns) Call

Return

Simulation time = 115ns

Figure 12

Socket

b_transport(t, 0ns)

b_transport(t, 10ns)

Call

Return

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 59

g) Figure 13 shows the case where an initiator calls b_transport, but the target only registers an
nb_transport_fw callback with the simple target socket. The initiator calls b_transport, then the socket
and the target handshake using nb_transport and obeying the rules of the base protocol. The target may
or may not send the END_REQ phase; it may jump straight to the BEGIN_RESP phase. The socket
returns TLM_COMPLETED from the call to nb_transport_bw for the BEGIN_RESP phase.

Example

#define SC_INCLUDE_DYNAMIC_PROCESSES
#include "tlm.h"
#include "tlm_utils/simple_initiator_socket.h" // Header files from utilities
#include "tlm_utils/simple_target_socket.h"

struct Initiator: sc_module
{

tlm_utils::simple_initiator_socket<Initiator, 32, tlm::tlm_base_protocol_types> socket;

SC_CTOR(Initiator)
: socket("socket") // Construct and name simple socket
{ // Register callbacks with simple socket

socket.register_nb_transport_bw(this, &Initiator::nb_transport_bw);
socket.register_invalidate_direct_mem_ptr(this, &Initiator::invalidate_direct_mem_ptr);

}

Simple target socket b/nb adapter

Initiator Target

nb_transport_fw(t, BEGIN_REQ, 0ns)

TLM_ACCEPTED

Call

Return

Simulation time = 100ns

Simulation time = 110ns

TLM_COMPLETED

nb_transport_bw(t, BEGIN_RESP, 0ns) Call

Return

Simulation time = 120ns

Figure 13

Socket

b_transport(t, 10ns)

b_transport(t, 0ns)

Call

Return

TLM_ACCEPTED

nb_transport_bw(t, END_REQ, 0ns) Call

Return

Simulation time = 130ns

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)60

virtual tlm::tlm_sync_enum nb_transport_bw(
tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_time& delay) {

return tlm::TLM_COMPLETED; // Dummy implementation
}

virtual void invalidate_direct_mem_ptr(sc_dt::uint64 start_range, sc_dt::uint64 end_range)
{ } // Dummy implementation

};

struct Target: sc_module // Target component
{

tlm_utils::simple_target_socket<Target, 32, tlm::tlm_base_protocol_types> socket;

SC_CTOR(Target)
: socket("socket") // Construct and name simple socket
{ // Register callbacks with simple socket

socket.register_nb_transport_fw(this, &Target::nb_transport_fw);
socket.register_b_transport(this, &Target::b_transport);
socket.register_get_direct_mem_ptr(this, &Target::get_direct_mem_ptr);
socket.register_transport_dbg(this, &Target::transport_dbg);

}

virtual void b_transport(tlm::tlm_generic_payload& trans, sc_time& delay)
{ } // Dummy implementation

virtual tlm::tlm_sync_enum nb_transport_fw(
tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_time& delay) {

return tlm::TLM_ACCEPTED; // Dummy implementation
}

virtual bool get_direct_mem_ptr(tlm::tlm_generic_payload& trans, tlm::tlm_dmi& dmi_data)
{ return false; } // Dummy implementation

virtual unsigned int transport_dbg(tlm::tlm_generic_payload& r)
{ return 0; } // Dummy implementation

};

SC_MODULE(Top)
{

Initiator *initiator;
Target *target;
SC_CTOR(Top) {

initiator = new Initiator("initiator");
target = new Target("target");
initiator->socket.bind(target->socket); // Bind initiator socket to target socket

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 61

}
};

5.3.3 Tagged simple sockets

5.3.3.1 Introduction

The tagged simple sockets are a variation on the simple sockets that tag incoming interface method calls with
an integer id that allows the callback to identify through which socket the incoming call arrived. This is useful
in the case where the same callback method is registered with multiple initiator sockets or multiple target
sockets. The id is specified when the callback is registered, and gets inserted as an extra first argument to the
callback method.

5.3.3.2 Class definition

namespace tlm_utils {

template <
 typename MODULE,
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm::tlm_base_protocol_types
>
class simple_initiator_socket_tagged : public tlm::tlm_initiator_socket<BUSWIDTH, TYPES>
{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;

 explicit simple_initiator_socket_tagged(const char* n = "simple_initiator_socket_tagged");

 void register_nb_transport_bw(
 MODULE* mod,
 sync_enum_type (MODULE::*cb)(int, transaction_type&, phase_type&, sc_core::sc_time&),
 int id);

 void register_invalidate_direct_mem_ptr(
 MODULE* mod,
 void (MODULE::*cb)(int, sc_dt::uint64, sc_dt::uint64),
 int id);
};

template <

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)62

 typename MODULE,
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm::tlm_base_protocol_types
>
class simple_target_socket_tagged : public tlm::tlm_target_socket<BUSWIDTH, TYPES>
{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;
 typedef tlm::tlm_fw_transport_if<TYPES> fw_interface_type;
 typedef tlm::tlm_bw_transport_if<TYPES> bw_interface_type;
 typedef tlm::tlm_target_socket<BUSWIDTH, TYPES> base_type;

 explicit simple_target_socket_tagged(const char* n = "simple_target_socket_tagged");

 tlm::tlm_bw_transport_if<TYPES> * operator ->();

 void register_nb_transport_fw(
 MODULE* mod,
 sync_enum_type (MODULE::*cb)(int id, transaction_type&, phase_type&, sc_core::sc_time&),
 int id);

 void register_b_transport(
 MODULE* mod,
 void (MODULE::*cb)(int id, transaction_type&, sc_core::sc_time&),
 int id);

 void register_transport_dbg(
 MODULE* mod,
 unsigned int (MODULE::*cb)(int id, transaction_type&),
 int id);

 void register_get_direct_mem_ptr(
 MODULE* mod,
 bool (MODULE::*cb)(int id, transaction_type&, tlm::tlm_dmi&),
 int id);
};

template <
 typename MODULE,
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm::tlm_base_protocol_types
>
class passthrough_target_socket_tagged : public tlm::tlm_target_socket<BUSWIDTH, TYPES>

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 63

{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;

 explicit passthrough_target_socket_tagged(const char* n = "passthrough_target_socket_tagged");

 void register_nb_transport_fw(
 MODULE* mod,
 sync_enum_type (MODULE::*cb)(int id, transaction_type&, phase_type&, sc_core::sc_time&),
 int id);

 void register_b_transport(
 MODULE* mod,
 void (MODULE::*cb)(int id, transaction_type&, sc_core::sc_time&),
 int id);

 void register_transport_dbg(
 MODULE* mod,
 unsigned int (MODULE::*cb)(int id, transaction_type&),
 int id);

 void register_get_direct_mem_ptr(
 MODULE* mod,
 bool (MODULE::*cb)(int id, transaction_type&, tlm::tlm_dmi&),
 int id);
};

} // namespace tlm_utils

5.3.3.3 Rules

a) Apart from the int id tag, the tagged simple sockets behave in the same way as the untagged simple
sockets.

b) A given callback method can be registered with multiple sockets instances using different tags. This is
the purpose of the tagged sockets.

c) The int id tag is specified as the final argument of the methods used to register the callbacks. The socket
shall prepend this tag as the first argument of the corresponding callback method.

d) A tagged simple sockets is not a multi-socket. A tagged simple socket cannot be bound to multiple
sockets on other components. See clause 5.3.4 Multi-sockets.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)64

5.3.4 Multi-sockets

5.3.4.1 Introduction

The multi-sockets are a variation on the tagged simple sockets that permit a single socket to be bound to
multiple sockets on other components. In contrast to the tagged simple sockets, which identify through which
socket an incoming call arrives, a multi-socket callback is able to identify from which socket on another
component an incoming interface method call arrives, using the multi-port index number as the tag. Unlike
the other convenience sockets, the multi-sockets also support hierarchical child-to-parent socket binding on
both the initiator and target side.

The implementation of multi-sockets in the TLM-2.0 kit uses the boost libraries. The user should download
the boost libraries from www.boost.org and add the appropriate directory to the compiler include path.

5.3.4.2 Class definition

namespace tlm_utils {

template <
 typename MODULE,
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm::tlm_base_protocol_types,
 unsigned int N=0,
 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND
>
class multi_passthrough_initiator_socket : public multi_init_base< BUSWIDTH, TYPES, N, POL>
{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;
 typedef multi_init_base<BUSWIDTH, TYPES, N, POL> base_type;
 typedef typename base_type::base_target_socket_type base_target_socket_type;

 multi_passthrough_initiator_socket(const char* name);
 ~multi_passthrough_initiator_socket();

 void register_nb_transport_bw(
 MODULE* mod,
 sync_enum_type (MODULE::*cb)(int, transaction_type&, phase_type&, sc_core::sc_time&));

 void register_invalidate_direct_mem_ptr(
 MODULE* mod,
 void (MODULE::*cb)(int, sc_dt::uint64, sc_dt::uint64));

 // Override virtual functions of the tlm_initiator_socket:

http://www.boost.org/

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 65

 virtual tlm::tlm_bw_transport_if<TYPES>& get_base_interface();
 virtual sc_core::sc_export<tlm::tlm_bw_transport_if<TYPES> >& get_base_export();

 void bind(base_target_socket_type& s);
 void operator() (base_target_socket_type& s);

 // SystemC standard callback
 // multi_passthrough_initiator_socket::before_end_of_elaboration must be called from
 // any derived class
 void before_end_of_elaboration();

 // Bind multi initiator socket to multi initiator socket (hierarchical bind)
 void bind(base_type& s);
 void operator() (base_type& s);

 tlm::tlm_fw_transport_if<TYPES>* operator[](int i);
 unsigned int size();
};

template <
 typename MODULE,
 unsigned int BUSWIDTH = 32,
 typename TYPES = tlm::tlm_base_protocol_types,
 unsigned int N=0,
 sc_core::sc_port_policy POL = sc_core::SC_ONE_OR_MORE_BOUND
>
class multi_passthrough_target_socket : public multi_target_base< BUSWIDTH, TYPES, N, POL>
{
public:
 typedef typename TYPES::tlm_payload_type transaction_type;
 typedef typename TYPES::tlm_phase_type phase_type;
 typedef tlm::tlm_sync_enum sync_enum_type;

 typedef sync_enum_type
 (MODULE::*nb_cb)(int, transaction_type&, phase_type&, sc_core::sc_time&);
 typedef void (MODULE::*b_cb)(int, transaction_type&, sc_core::sc_time&);
 typedef unsigned int (MODULE::*dbg_cb)(int, transaction_type& txn);
 typedef bool (MODULE::*dmi_cb)(int, transaction_type& txn, tlm::tlm_dmi& dmi);

 typedef multi_target_base<BUSWIDTH, TYPES, N, POL> base_type;
 typedef typename base_type::base_initiator_socket_type base_initiator_socket_type;
 typedef typename base_type::initiator_socket_type initiator_socket_type;

 multi_passthrough_target_socket(const char* name);
 ~multi_passthrough_target_socket();

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)66

 void register_nb_transport_fw (MODULE* mod, nb_cb cb);
 void register_b_transport (MODULE* mod, b_cb cb);
 void register_transport_dbg (MODULE* mod, dbg_cb cb);
 void register_get_direct_mem_ptr(MODULE* mod, dmi_cb cb);

 // Override virtual functions of the tlm_target_socket:
 virtual tlm::tlm_fw_transport_if<TYPES>& get_base_interface();
 virtual sc_core::sc_export<tlm::tlm_fw_transport_if<TYPES> >& get_base_export();

 // SystemC standard callback
 // multi_passthrough_target_socket::end_of_elaboration must be called from any derived class
 void end_of_elaboration();

 void bind(base_type& s);
 void operator() (base_type& s);

 tlm::tlm_bw_transport_if<TYPES>* operator[] (int i);
 unsigned int size();
};

} // namespace tlm_utils

5.3.4.3 Rules

a) Apart from the multiple binding ability and the interpretation of the int id tag, the
multi_passthrough_initiator_socket behaves in a similar way to the simple_initiator_socket_tagged,
and the multi_passthrough_target_socket behaves in a similar way to the
passthrough_target_socket_tagged..

b) Class multi_passthrough_initiator_socket and class multi_passthrough_target_socket each act as
multi-sockets, that is, a single initiator socket may be bound to multiple target sockets, and a single target
socket may be bound to multiple initiator sockets. The two class templates have template parameters
specifying the number of bindings and the port binding policy, which are used within the class
implementation to parameterize the associated sc_port template instantiation.

c) A multi_passthrough_initiator_socket can be bound hierarchically to another
multi_passthrough_initiator_socket. A multi_passthrough_target_socket can be bound hierarchically
to another multi_passthrough_target_socket.

d) The binding operators can only be used in the direction intiator-socket-to-target-socket. In other words,
unlike classes tlm_target_socket and simple_target_socket, class multi_passthrough_target_socket
does not have operators to bind a target socket to an initiator socket.

e) If an object of class multi_passthrough_initiator_socket or multi_passthrough_target_socket is
bound multiple times, then the method operator[] can be used to address the corresponding object to
which the socket is bound. The index value is determined by the order in which the methods bind or

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 67

operator() were called to bind the sockets. This same index value is used to determine the id tag passed
to a callback.

f) For example, consider a multi_passthrough_initiator_socket bound to two separate targets. The calls
socket[0]->nb_transport_fw(...) and socket[1]->nb_transport_fw() would address the two targets, and
incoming nb_transport_bw() method calls from those two targets would carry the tags 0 and 1
respectively.

g) The method size shall return the number of socket instances to which the current multi-socket has been
bound. As for SystemC multi-ports, if size is called during elaboration and before the callback
end_of_elaboration, the value returned is implementation-defined because the time at which port
binding is completed is implementation-defined.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)68

6 Generic payload

6.1 Introduction

The generic payload is intended to improve the interoperability of memory-mapped bus models, which it does
at two levels. Firstly, the generic payload provides an off-the-shelf general-purpose payload that guarantees
immediate interoperability when creating abstract models of memory-mapped buses where the precise details
of the bus protocol are unimportant, whilst at the same time providing an extension mechanism for ignorable
attributes. Secondly, the generic payload can be used as the basis for creating detailed models of specific bus
protocols, with the advantage of reducing the implementation cost and increasing simulation speed when there
is a need to bridge or adapt between different protocols, sometimes to the point where the bridge becomes
trivial to write.

The generic payload is specifically aimed at modeling memory-mapped buses. It includes some of the
attributes found in typical memory-mapped bus protocols such as command, address, data, byte enables,
single word transfers, burst transfers, streaming, and response status. The generic payload may also be used as
the basis for modeling protocols other than memory-mapped buses.

The generic payload does not include every attribute found in typical memory-mapped bus protocols, but it
does include an extension mechanism so that applications can add their own specialised attributes.

For specific protocols, whether bus-based or not, modeling and interoperability are the responsibility of the
protocol owners and are outside the scope of OSCI. It is up to the protocol owners or subject matter experts to
proliferate models or coding guidelines for their own particular protocol. However, the generic payload is still
applicable here, because it provides a common starting point for model creation, and in many cases will
reduce the cost of bridging between different protocols in a transaction-level model.

It is recommended that the generic payload be used with the initiator and target sockets, which provide a bus
width parameter used when interpreting the data array of the generic payload as well as forward and backward
paths and a mechanism to enforce strong type checking between different protocols whether or not they are
based on the generic payload.

The generic payload can be used with both the blocking and non-blocking transport interfaces. It can also be
used with the direct memory and debug transport interfaces, in which case only a restricted set of attributes
are used.

6.2 Extensions and interoperability

The goal of the generic payload is to enable interoperability between memory-mapped bus models, but all
buses are not created equal. Given two transaction-level models that use different protocols and that model
those protocols at a detailed level, then just as in a physical system, a bridge must be inserted between those
models to perform protocol conversion and allow them to communicate. On the other hand, many transaction
level models produced early in the design flow do not care about the specific details of any particular
protocol. For such models it is sufficient to copy a block of data starting at a given address, and for those
models the generic payload can be used directly to give excellent interoperability.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 69

The generic payload extension mechanism permits any number of extensions of any type to be defined and
added to a transaction object. Each extension represents a new set of attributes, transported along with the
transaction object. Extensions can be created, added, written and read by initiators, interconnect components,
and targets alike. The extension mechanism itself does not impose any restrictions. Of course, undisciplined
use of this extension mechanism would compromise interoperability, so disciplined use is strongly
encouraged. But the flexibility is there where you need it!

The use of the extension mechanism represents a trade-off between increased coding convenience when
binding sockets, and decreased compile-time type checking. If the undisciplined use of generic payload
extensions were allowed, each application would be obliged to detect any incompatibility between extensions
by including explicit run-time checks in each interconnect component and target, and there would be no
mechanism to enforce the existence of a given extension. The TLM-2 standard prescribes specific coding
guidelines to avoid these pitfalls.

There are three, and only three, recommended alternatives for the transaction template argument TRANS of
the blocking and non-blocking transport interfaces and the template argument TYPES of the combined
interfaces:

a) Use the generic payload directly, with ignorable extensions

b) Define a new protocol types class containing a typedef for tlm_generic_payload.

c) Define a new protocol types class and a new transaction type

These three alternatives are defined below in order of decreasing interoperability.

It should be emphasized that although deriving a new class from the generic payload is possible, it is not the
recommended approach for interoperability

It should also be emphasized that these three options may be mixed in a single system model. In particular,
there is value in mixing the first two options, since the extension mechanism has been designed to permit
efficient interoperability.

6.2.1 Use the generic payload directly, with ignorable extensions

a) In this case, the transaction type is tlm_generic_payload, and the protocol types class for the combined
interfaces is tlm_base_protocol_types. These are the default values for the TRANS argument of the
transport interfaces and TYPES argument of the combined interfaces, respectively. Any model that uses a
core transport interface specialized with the generic payload will be interoperable with any other model
that uses the same transport interface, provided that those models respect the semantics of the generic
payload. See clause 7.2 Base protocol

b) In this case, it is strongly recommended that any generic payload and phase extensions should be
ignorable. Ignorable means that a target or interconnect component shall not fail and shall not generate
an error response because of the absence of a given extension, and that the component shall perform its
primary function in the same way regardless of whether the given extension is present or absent.

c) If an extension is deemed ignorable, then by definition compile-time checking to enforce support for that
extension in a target is not wanted, and indeed, the ignorable extension mechanism does not support
compile-time checking.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)70

d) In general, an ignorable extension can be thought of as one for which there exists an obvious and safe
default value, such that any interconnect component or target can behave normally in the absence of the
given extension by assuming the default value. An example might be the privilege level associated with a
transaction, where the default is the lowest level. In the end, the definition of ignorable comes down to a
matter of judgement.

e) Ignorable extensions may be used to transport auxiliary, side-band, or simulation-related information or
meta-data. For example, a unique transaction identifier, the wall-time when the transaction was created,
or a diagnostic filename.

f) The generic payload intrinsically supports minor variations in protocol. As a general principle, a target is
recommended to support every feature of the generic payload. But, for example, a particular component
may or may not support byte enables. A target that is unable to support a particular feature of the generic
payload is obliged to generate the standard error response. This should be thought of as being part of the
specification of the generic payload.

g) Note that there are two separate transport interfaces, blocking and non-blocking, and that interoperability
between those interfaces depends on the coding style chosen and may require adapters.

6.2.2 Define a new protocol types class containing a typedef for tlm_generic_payload

a) In this case, the transaction type is tlm_generic_payload, but the protocol types class used to
parameterize the combined interfaces is a new application-defined class, not the default
tlm_base_protocol_types. This ensures that the extended generic payload is treated as a distinct type,
and provides compile-time type checking when that the initiator and target sockets are bound.

b) The generic payload extension mechanism may be used for ignorable or for mandatory extensions with
no restrictions. The semantics of any extensions should be thoroughly documented with the new protocol
types class.

c) Because the transaction type is tlm_generic_payload, the transaction can be transported through
interconnect components and targets that use the generic payload type, and can be cloned in its entirety,
including all extensions. This provides a good starting point for building interoperable components, but
the user should consider the semantics of the extended generic payload very carefully.

d) There are two recommended patterns of use, outlined below.

e) The first pattern is to use the new protocol types class throughout the initiator, interconnect and target.
This pattern supports strong compile-time type checking when binding sockets.

f) The second pattern is to pass the generic payload transaction object through a series of intiator-to-target
socket connections where the sockets at the extreme ends of the path use the new protocol types class, but
some of the intervening sockets use tlm_base_protocol_types.

g) When passing a generic payload transaction between sockets parameterized with different protocol types
classes, the user is obliged to consider the semantics of each extension very carefully to ensure that the
transaction can be transported through components that are aware of the generic payload but not the
extensions. There is no general rule. Some extensions can be transported through generic payload
components without mishap, for example an attribute specifying the security level of the data. Other
extensions will require explicit adaption or might not be supportable at all, for example an attribute
specifying that the interconnect is to be locked.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 71

6.2.3 Define a new protocol types class and a new transaction type

a) In this case, the transaction type may be unrelated to the generic payload.

b) A new protocol types class will need to be defined to parameterize the combined interfaces and the
sockets.

c) This choice may be justified when the new transaction type is significantly different from the generic
payload or represents a very specific protocol.

d) If the intention is to use the generic payload for maximal interoperability, the recommended approach is
to use the generic payload as described in one of the previous two clauses rather than use it in the
definition of a new class.

6.3 Generic payload attributes and methods

The generic payload class contains a set of private attributes, and a set of public access functions to get and
set the values of those attributes. The exact implementation of those access functions is implementation-
defined.

The majority of the attributes are set by the initiator and shall not be modified by any interconnect component
or target. Only the address, return status and extension attributes may be modified by an interconnect
component or by the target. In the case of a read command, the target may also modify the data array.

6.4 Class definition

namespace tlm {

class tlm_generic_payload;

class tlm_mm_interface {
public:
 virtual void free(tlm_generic_payload*) = 0;
 virtual ~tlm_mm_interface() {}
};

class tlm_extension_base
{
public:
 virtual tlm_extension_base* clone() const = 0;
 virtual void free() { delete this; }
 virtual void copy_from(tlm_extension_base const &) = 0;
protected:
 virtual ~tlm_extension_base() {}
};

template <typename T>

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)72

class tlm_extension : public tlm_extension_base
{
public:
 virtual tlm_extension_base* clone() const = 0;
 virtual void copy_from(tlm_extension_base const &) = 0;
 virtual ~tlm_extension() {}
 const static unsigned int ID;
};

enum tlm_command {
 TLM_READ_COMMAND,
 TLM_WRITE_COMMAND,
 TLM_IGNORE_COMMAND
};

enum tlm_response_status {
 TLM_OK_RESPONSE = 1,
 TLM_INCOMPLETE_RESPONSE = 0,
 TLM_GENERIC_ERROR_RESPONSE = -1,
 TLM_ADDRESS_ERROR_RESPONSE = -2,
 TLM_COMMAND_ERROR_RESPONSE = -3,
 TLM_BURST_ERROR_RESPONSE = -4,
 TLM_BYTE_ENABLE_ERROR_RESPONSE = -5
 };

#define TLM_BYTE_DISABLED 0x0
#define TLM_BYTE_ENABLED 0xff

class tlm_generic_payload {
public:
 // Constructors and destructor
 tlm_generic_payload();
 explicit tlm_generic_payload(tlm_mm_interface*);
 virtual ~tlm_generic_payload();

private:
 // Disable copy constructor and assignment operator
 tlm_generic_payload(const tlm_generic_payload&);
 tlm_generic_payload& operator= (const tlm_generic_payload&);

public:
 // Memory management
 void set_mm(tlm_mm_interface*);
 bool has_mm();
 void acquire();
 void release();

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 73

 int get_ref_count();
 void reset();
 void deep_copy_from(const tlm_generic_payload&) const;
 void update_extensions_from(const tlm_generic_payload &);
 void free_all_extensions();

 // Access methods
 tlm_command get_command() const;
 void set_command(const tlm_command);
 bool is_read();
 void set_read();
 bool is_write();
 void set_write();

 sc_dt::uint64 get_address() const;
 void set_address(const sc_dt::uint64);

 unsigned char* get_data_ptr() const;
 void set_data_ptr(unsigned char*);

 unsigned int get_data_length() const;
 void set_data_length(const unsigned int);

 unsigned int get_streaming_width() const;
 void set_streaming_width(const unsigned int);

 unsigned char* get_byte_enable_ptr() const;
 void set_byte_enable_ptr(unsigned char*);
 unsigned int get_byte_enable_length() const;
 void set_byte_enable_length(const unsigned int);

 // DMI hint
 void set_dmi_allowed(bool);
 bool is_dmi_allowed() const;

 tlm_response_status get_response_status() const;
 void set_response_status(const tlm_response_status);
 std::string get_response_string();
 bool is_response_ok();
 bool is_response_error();

 // Extension mechanism
 template <typename T> T* set_extension(T*);
 tlm_extension_base* set_extension(unsigned int , tlm_extension_base*);

 template <typename T> T* set_auto_extension(T*);

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)74

 tlm_extension_base* set_auto_extension(unsigned int index , tlm_extension_base*);

 template <typename T> void get_extension(T*&) const;
 template <typename T> T* get_extension() const;
 tlm_extension_base* get_extension(unsigned int) const;

 template <typename T> void clear_extension(const T*);
 template <typename T> void clear_extension();

 template <typename T> void release_extension(T* ext);
 template <typename T> void release_extension();

 void resize_extensions();
};

} // namespace tlm

6.5 Generic payload memory management

a) The initiator shall be responsible for setting the data pointer and byte enable pointer attributes to existing
storage, which could be static, automatic (stack) or dynamically allocated (new) storage. The initiator
shall not delete this storage before the lifetime of the transaction is complete. The generic payload
destructor does not delete these two arrays.

b) This clause should be read in conjunction with clause 6.20 Generic payload extensions.

c) The generic payload supports two distinct approaches to memory management; reference counting with
an explicit memory manager, and ad hoc memory management by the initiator. The two approaches can
be combined. Any memory management approach should manage both the transaction object itself and
any extensions to the transaction object.

d) A memory manager is a user-defined class that implements at least the free method of the abstract base
class tlm_mm_interface. The intention is that such a class would provide methods to allocate generic
payload transaction objects from a pool.

e) The methods set_mm, acquire, release, get_ref_count and reset of the generic payload shall only used
in the presence of a memory manager. By default, a generic payload object does not have a memory
manager set.

f) Ad hoc memory management by the initiator without a memory manager requires the initiator to allocate
memory for the transaction object before the TLM-2 core interface call, and delete or pool the transaction
object and any extension objects after the call.

g) When the generic payload is used with the blocking transport interface, the direct memory interface or
the debug transport interface, either approach may be used. Ad hoc memory management by the initiator
is sufficient. In the absence of a memory manager, the b_transport, get_direct_mem_ptr, or
transport_dbg method should assume that the transaction object and any extensions will be invalidated
or deleted on return.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 75

h) When the generic payload is used with the non-blocking transport interface, a memory manager shall be
used. Any transaction object passed as an argument to nb_transport shall have a memory manager
already set. This applies whether the caller is the initiator, an interconnect component, or a target.

i) A blocking-to-non-blocking transport adapter would have to set a memory manager if none existed
already.

j) When using a memory manager, the transaction object and any extension objects shall be allocated from
the heap (ultimately by calling new or malloc).

k) When using ad hoc memory management, the transaction object and any extensions may be allocated
from the heap or from the stack. When using stack allocation, particular care needs to be taken with the
memory management of extension objects.

l) The method set_mm shall set the memory manager of the generic payload object to the object whose
address is passed as an argument. The argument may be null, in which case any existing memory
manager would be removed from the transaction object, but not itself deleted. set_mm shall not be called
for a transaction object that already has a memory manager and a reference count greater than 0.

m) The method has_mm shall return true if and only if a memory manager has been set. When called from
the body of an nb_transport method, has_mm should return true.

n) When called from the body of the b_transport, get_direct_mem_ptr, or transport_dbg methods,
has_mm may return true or false. An interconnect component may call has_mm and take the appropriate
action depending on whether or not a transaction has a memory manager. Otherwise, it shall assume all
the obligations of a transaction with a memory manager (for example, heap allocation), but shall not call
any of the methods that require the presence of a memory manager (for example, acquire).

o) Each generic payload object has a reference count. The default value of the reference count is 0.

p) The method acquire shall increment the value of the reference count. If acquire is called in the absence
of a memory manager, a run-time error will occur.

q) The method release shall decrement the value of the reference count, and if this leaves the value equal to
0, shall call the method free of the memory manager object, passing the address of the transaction object
as an argument. If release is called in the absence of a memory manager, a run-time error will occur.

r) The method get_ref_count shall return the value of the reference count. In the absence of a memory
manager, the value returned would be 0.

s) In the presence of a memory manager, each initiator should call the acquire method of each transaction
object before first passing that object as an argument to an interface method call, and should call the
release method of that transaction object when the object is no longer required.

t) In the presence of a memory manager, each interconnect component and target should call the acquire
whenever they need to extend the lifetime of a transaction object beyond the current interface method
call, and call the release method when the object is no longer required.

u) If an interconnect component or a target wishes to extend the lifetime of a transaction object indefinitely
for analysis purposes, it should make a clone of the transaction object rather than using the reference
counting mechanism. In other words, the reference count should not be used to extend the lifetime of a
transaction object beyond the normal phases of the protocol.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)76

v) In the presence of a memory manager, a transaction object shall not be re-used to represent a new
transaction or re-used with a different interface until the reference count indicates that no component
other than the initiator itself still has a reference to the transaction object. That is, assuming the initiator
has called acquire for the transaction object, until the reference count equals 1. This rule applies when
re-using transactions with the same interface or across the transport, direct memory and debug transport
interfaces.

w) The method reset shall delete any extensions marked for automatic deletion, and shall set the
corresponding extension pointers to null. Each extension shall be deleted by calling the method free of
the extension object. The free method could conceivably be overloaded if a user wished to provide
explicit memory management for extension objects.

x) An extension object added by calling set_extension may be deleted by calling release_extension.
Calling clear_extension would only clear the extension pointer, not delete the extension object itself.
This latter behavior would be required in the case that transaction objects are stack-allocated without a
memory manager, and extension objects pooled.

y) In the absence of a memory manager, whichever component allocates or sets a given extension should
also delete or clear that same extension before returning control from b_transport,
get_direct_mem_ptr, or transport_dbg. For example, an interconnect component that implements
b_transport and calls set_mm to add a memory manager to a transaction object shall not return from
b_transport until it has removed from the transaction object all extensions added by itself (and assuming
that any downstream components will already have removed any extensions added by themselves, by
virtue of this very same rule).

z) In the presence of a memory manager, extensions would normally be added by calling
set_auto_extension, and thus deleted or pooled automatically by the memory manager. Extensions added
by calling set_extension are so-called sticky extensions, meaning that they will not be automatically
deleted when the transaction reference count reaches 0.

aa) If it is unknown whether or not a memory manager is present, extensions should be added by calling
set_extension and deleted by calling release_extension. This calling sequence is safe in the presence or
absence of a memory manager. This circumstance can only occur within an interconnect component or
target that chooses not to call has_mm. (Within an initiator, it is always known whether or not a memory
manager is present, and a call to has_mm will always reveal whether or not a memory manager is
present.)

bb) The method free_all_extensions shall delete all extensions, including but not limited to those marked for
automatic deletion, and shall set the corresponding extension pointers to null. Each extension shall be
deleted by calling the method free of the extension object. The free method could conceivably be
overloaded if a user wished to provide explicit memory management for extension objects.

cc) free_all_extensions would be useful when removing the extensions from a pooled transaction object that
does not use a memory manager. With a memory manager, extensions marked for automatic deletion
would indeed have been deleted automatically, while sticky extensions would not need to be deleted.

dd) The method deep_copy_from shall modify the attributes and extensions of the current transaction object
by copying those of another transaction object. The data and byte enable arrays shall be deep copied if
the corresponding pointers in both transactions are non-null. The application is responsible for ensuring
that the arrays in the current transaction are sufficiently large. If an extension on the other transaction

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 77

already exists on the current transaction, it shall be copied by calling the copy_from method of the
extension class. Otherwise, a new extension object shall be created by calling the clone method of the
extension class, and set on the current transaction. In the case of cloning, the new extension shall be
marked for automatic deletion if and only if a memory manager is present for the current transaction.

ee) In other words, in the presence of a memory manager deep_copy_from will mark for automatic deletion
any new extensions that were not already on the current object. Without a memory manager, all
extensions are sticky.

ff) The method update_extensions_from shall modify the extensions of the current transaction object by
copying from another transaction object only those extensions that were already present on the current
object. The extensions shall be copied by calling the copy_from method of the extension class.

gg) The typical use case for deep_copy_from and update_extensions_from is to deep copy an incoming
transaction object arriving through a target socket, send the copy out through an initiator socket, then on
return of the transaction (using either the backward path or the return path) call update_extensions_from
to copy any extensions back to the first transaction object, ignoring any extensions added downstream.

hh) These obligations apply to the generic payload. In principle, similar obligations might apply to
transaction types unrelated to the generic payload

6.6 Constructors, assignment, and destructor

a) The default constructor shall set the generic payload attributes to their default values, as defined in the
following clauses.

b) The constructor tlm_generic_payload(tlm_mm_interface*) shall set the generic payload attributes to
their default values, and shall set the memory manager of the generic payload object to the object whose
address is passed as an argument. This is equivalent to calling the default constructor then immediately
calling set_mm.

c) The copy constructor and assignment operators are disabled.

d) The virtual destructor ~tlm_generic_payload shall delete all extensions, including but not limited to
those marked for automatic deletion. Each extension shall be deleted by calling the method free of the
extension object. The destructor shall not delete the data array or the byte enable array.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)78

6.7 Default values and modifiability of attributes

Because transaction objects are frequently pooled and reused, the onus is on the initiator to set the value of
every generic payload attribute prior to passing the transaction object through an interface method call.

The default values and modifiability of the generic payload attributes are summarized in the following table:

Attribute Default value Modifiable by
interconnect?

Modifiable by
target?

Command TLM_IGNORE_COMMAND No No

Address 0 Yes No

Data pointer 0 No No

Data array - No Yes (read cmd)

Data length 0 No No

Byte enable pointer 0 No No

Byte enable array - No No

Byte enable length 0 No No

Streaming width 0 No No

DMI allowed false Yes Yes

Response status TLM_INCOMPLETE_RESPONSE No Yes

Extension pointers 0 Yes Yes

Note that the interconnect and target are not permitted to modify the data array in the case of a write
command, but the target alone is permitted to modify the data array in the case of a read command.

In the case that a transaction object is pooled and re-used, these modifiability rules cease to apply at the end of
the lifetime of the transaction. In the presence of a memory manager, this is the point at which the reference
count reaches 0, or otherwise, on return from b_transport.

6.8 Command attribute

a) The method set_command shall set the command attribute to the value passed as an argument. The
method get_command shall return the current value of the command attribute.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 79

b) The methods set_read and set_write shall set the command attribute to TLM_READ_COMMAND and
TLM_WRITE_COMMAND respectively. The methods is_read and is_write shall return true if and
only if the current value of the command attribute is TLM_READ_COMMAND and
TLM_WRITE_COMMAND respectively.

c) A read command is a generic payload transaction with the command attribute equal to
TLM_READ_COMMAND. A write command is a generic payload transaction with the command
attribute equal to TLM_WRITE_COMMAND.

d) On receipt of a read command, the target shall copy the contents of a local array in the target to the array
pointed to be the data pointer attribute, honoring all the semantics of the generic payload as defined by
this standard.

e) On receipt of a write command, the target shall copy the array pointed to by the data pointer attribute to a
local array in the target, honoring all the semantics of the generic payload as defined by this standard.

f) If the target is unable to execute a read or write command, it shall generate a standard error response. The
recommended response status is TLM_COMMAND_ERROR_RESPONSE.

g) On receipt of a generic payload transaction with the command attribute equal to
TLM_IGNORE_COMMAND, the target shall not execute a write command or a read command. In
particular, it shall not modify the value of the local array that would be modified by a write command, or
modify the value of the array pointed to by the data pointer attribute. The target may, however, use the
value of any attribute in the generic payload, including any extensions.

h) The command attribute shall be set by the initiator, and shall not be overwritten by any interconnect
component or target.

i) The default value of the command attribute shall be TLM_IGNORE_COMMAND.

6.9 Address attribute

a) The method set_address shall set the address attribute to the value passed as an argument. The method
get_address shall return the current value of the address attribute.

b) For a read command or a write command, the target shall interpret the current value of the address
attribute as the start address in the system memory map of the contiguous block of data being read or
written. This address may or may not correspond to the first byte in the array pointed to by the data
pointer attribute, depending on the endianness of the host computer.

c) The address associated with any given byte in the data array is dependent upon the address attribute, the
array index, the streaming width attribute, the endianness of the host computer and the width of the
socket. See clause 6.17 Endianness

d) The value of the address attribute need not be word-aligned (although address calculations can be
considerably simplified if the address attribute is a multiple of the local socket width expressed in bytes).

e) If the target is unable to execute the transaction with the given address attribute (because the address is
out-of-range, for example) it shall generate a standard error response. The recommended response status
is TLM_ADDRESS_ERROR_RESPONSE.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)80

f) The address attribute shall be set by the initiator, but may be overwritten by one or more interconnect
components. This may be necessary if an interconnect component performs address translation, for
example to translate an absolute address in the system memory map to a relative address in the memory
map known to the target. Once the address attribute has been overwritten in this way, the old value is lost
(unless it was explicitly saved somewhere).

g) The default value of the address attribute shall be 0.

6.10 Data pointer attribute

a) The method set_data_ptr shall set the data pointer attribute to the value passed as an argument. The
method get_data_ptr shall return the current value of the data pointer attribute. Note that the data pointer
attribute is a pointer to the data array, and these methods set or get the value of the pointer, not the
contents of the array.

b) For a read command or a write command, the target shall copy data to or from the data array,
respectively, honoring the semantics of the remaining attributes of the generic payload.

c) The storage for the data array shall be allocated by the initiator. The storage may represent the final
source or destination of the data in the initiator, such as a register file or cache memory, or may represent
a temporary buffer used to transfer data to and from the transaction level interface.

d) In general, the organisation of the generic payload data array is independent of the organisation of local
storage within the initiator and the target. However, the generic payload has been designed so that data
can be copied to and from the target with a single call to memcpy in most circumstances. This assumes
that the target uses the same storage organisation as the generic payload. This assumption is made for
simulation efficiency, but does not restrict the expressive power of the generic payload: the target is free
to transform the data in any way it wishes as it copies the data to and from the data array.

e) It is an error to call the transport interface with a transaction object having a null data pointer attribute.

f) The length of the data array shall be greater than or equal to the value of the data length attribute, in
bytes.

g) The data pointer attribute shall be set by the initiator, and shall not be overwritten by any interconnect
component or target.

h) For a write command or TLM_IGNORE_COMMAND, the contents of the data array shall be set by the
initiator, and shall not be overwritten by any interconnect component or target

i) For a read command, the contents of the data array shall be overwritten by the target (honoring the
semantics of the byte enable) but by no other component.

j) The default value of the data pointer attribute shall be 0, the null pointer.

6.11 Data length attribute

a) The method set_data_length shall set the data length attribute to the value passed as an argument. The
method get_data_length shall return the current value of the data length attribute.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 81

b) For a read command or a write command, the target shall interpret the data length attribute as the number
of bytes to be copied to or from the data array, inclusive of any bytes disabled by the byte enable
attribute.

c) The data length attribute shall be set by the initiator, and shall not be overwritten by any interconnect
component or target.

d) The data length attribute shall not be set to 0. In order to transfer zero bytes, the command attribute
should be set to TLM_IGNORE_COMMAND.

e) When using the standard socket classes of the interoperability layer (or classes derived from these) for
burst transfers, the word length for each transfer shall be determined by the BUSWIDTH template
parameter of the socket. BUSWIDTH is independent of the data length attribute. BUSWIDTH shall be
expressed in bits. If the data length is less than or equal to the BUSWIDTH / 8, the transaction is
effectively modeling a single-word transfer, and if greater, the transaction is effectively modeling a burst.
A single transaction can be passed through sockets of different bus widths. The BUSWIDTH may be
used to calculate the latency of the transfer.

f) The target may or may not support transactions with data length greater than the word length of the
target, whether the word length is given by the BUSWIDTH template parameter or by some other value.

g) If the target is unable to execute the transaction with the given data length, it shall generate a standard
error response, and it shall not modify the contents of the data array. The recommended response status is
TLM_BURST_ERROR_RESPONSE.

h) The default value of the data length attribute shall be 0, which is an invalid value. Hence, the data length
attribute shall be set explicitly before the transaction object is passed through an interface method call.

6.12 Byte enable pointer attribute

a) The method set_byte_enable_ptr shall set the pointer to the byte enable array to the value passed as an
argument. The method get_byte_enable_ptr shall return the current value of the byte enable pointer
attribute.

b) The elements in the byte enable array shall be interpreted as follows. A value of 0 shall indicate that that
corresponding byte is disabled, and a value of 0xff shall indicate that the corresponding byte is enabled.
The meaning of all other values shall be undefined. The value 0xff has been chosen so that the byte
enable array can be used directly as a mask. The two macros TLM_BYTE_DISABLED and
TLM_BYTE_ENABLED are provided for convenience.

c) Byte enables may be used to create burst transfers where the address increment between each beat is
greater than the number of significant bytes transferred on each beat, or to place words in selected byte
lanes of a bus. At a more abstract level, byte enables may be used to create “lacy bursts” where the data
array of the generic payload has an arbitrary pattern of holes punched in it.

d) The byte enable mask may be defined by a small pattern applied repeatedly or by a large pattern covering
the whole data array. See clause 6.13 Byte enable length attribute

e) The number of elements in the byte enable array shall be given by the byte enable length attribute.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)82

f) The byte enable pointer may be set to 0, the null pointer, in which case byte enables shall not be used for
the current transaction, and the byte enable length shall be ignored.

g) If byte enables are used, the byte enable pointer attribute shall be set by the initiator, the storage for the
byte enable array shall be allocated by the initiator, the contents of the byte enable array shall be set by
the initiator, and the contents of the byte enable array shall not be overwritten by any interconnect
component or target.

h) If the byte enable pointer is non-null, the target shall either implement the semantics of the byte enable as
defined below or shall generate a standard error response. The recommended response status is
TLM_BYTE_ENABLE_ERROR_RESPONSE.

i) In the case of a write command, any interconnect component or target should ignore the values of any
disabled bytes in the data array. It is recommended that disabled bytes have no effect on the behavior of
any interconnect component or target. The initiator may set those bytes to any values, since they are
going to be ignored.

j) In the case of a write command, when a target is doing a byte-by-byte copy from the transaction data
array to a local array, the target should not modify the values of bytes in the local array corresponding to
disabled bytes in the generic payload.

k) In the case of a read command, any interconnect component or target should not modify the values of
disabled bytes in the data array. The initiator can assume that disabled bytes will not be modified by any
interconnect component or target.

l) In the case of a read command, when a target is doing a byte-by-byte copy from a local array to the
transaction data array, the target should ignore the values of bytes in the local array corresponding to
disabled bytes in the generic payload.

m) If the application needs to violate these semantics for byte enables, or to violate any other semantics of
the generic payload as defined in this document, the recommended approach would be to create a new
protocol types class. See clause 6.2.2 Define a new protocol types class containing a typedef for
tlm_generic_payload

n) The default value of the byte enable pointer attribute shall be 0, the null pointer.

6.13 Byte enable length attribute

a) The method set_byte_enable_length shall set the byte enable length attribute to the value passed as an
argument. The method get_byte_enable_length shall return the current value of the byte enable length
attribute.

b) For a read command or a write command, the target shall interpret the byte enable length attribute as the
number of elements in the bytes enable array.

c) The byte enable length attribute shall be set by the initiator, and shall not be overwritten by any
interconnect component or target.

d) The byte enable to be applied to a given element of the data array shall be calculated using the formula
byte_enable_array_index = data_array_index % byte_enable_length. In other words, the byte enable
array is applied repeatedly to the data array.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 83

e) The byte enable length attribute may be greater than the data length attribute, in which case any
superfluous byte enables should not affect the behavior of a read or write command, but could be used by
extensions.

f) If the byte enable pointer is 0, the null pointer, then the value of the byte enable length attribute shall be
ignored by any interconnect component or target. If the byte enable pointer is non-0, the byte enable
length shall be non-0.

g) If the target is unable to execute the transaction with the given byte enable length, it shall generate a
standard error response. The recommended response status is
TLM_BYTE_ENABLE_ERROR_RESPONSE.

h) The default value of the byte enable length attribute shall be 0.

6.14 Streaming width attribute

a) The method set_streaming_width shall set the streaming width attribute to the value passed as an
argument. The method get_streaming_width shall return the current value of the streaming width
attribute.

b) For a read command or a write command, the target shall interpret and act upon the current value of the
streaming width attribute

c) Streaming affects the way a component should interpret the data array. A stream consists of a sequence of
data transfers occurring on successive notional beats, each beat having the same start address as given by
the generic payload address attribute. The streaming width attribute shall determine the width of the
stream, that is, the number of bytes transferred on each beat. In other words, streaming affects the local
address associated with each byte in the data array. In all other respects, the organisation of the data array
is unaffected by streaming.

d) The bytes within the data array have a corresponding sequence of local addresses within the component
accessing the generic payload transaction. The lowest address is given by the value of the address
attribute. The highest address is given by the formula address_attribute + streaming_width – 1. The
address to or from which each byte is being copied in the target shall be set to the value of the address
attribute at the start of each beat.

e) With respect to the interpretation of the data array, a single transaction with a streaming width shall be
functionally equivalent to a sequence of transactions each having the same address as the original
transaction, each having a data length attribute equal to the streaming width of the original, and each with
a data array that is a different subset of the original data array on each beat. This subset effectively steps
down the original data array maintaining the sequence of bytes.

f) A streaming width of 0 shall be invalid. If a streaming transfer is not required, the streaming width
attribute should be set to a value greater than or equal to the value of the data length attribute.

g) The value of the streaming width attribute shall have no affect on the length of the data array or the
number of bytes stored in the data array.

h) Width conversion issues may arise when the streaming width is different from the width of the socket
(when measured as a number of bytes). See clause 6.17 Endianness

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)84

i) If the target is unable to execute the transaction with the given streaming width, it shall generate a
standard error response. The recommended response status is TLM_BURST_ERROR_RESPONSE.

j) Streaming may be used in conjunction with byte enables, in which case the streaming width would
typically be equal to the byte enable length. It would also make sense to have the streaming width a
multiple of the byte enable length. Having the byte enable length a multiple of the streaming width would
imply that different bytes were enabled on each beat.

k) The default value of the streaming width attribute shall be 0.

6.15 DMI allowed attribute

a) The method set_dmi_allowed shall set the DMI allowed attribute to the value passed as an argument.
The method is_dmi_allowed shall return the current value of the DMI allowed attribute.

b) The DMI allowed attribute provides a hint to an initiator that it may try to obtain a direct memory pointer.
The target should set this attribute to true if the transaction at hand could have been done through DMI.
See clause 4.2.7 Optimization using a DMI Hint

c) The default value of the DMI allowed attribute shall be false.

6.16 Response status attribute

a) The method set_response_status shall set the response status attribute to the value passed as an
argument. The method get_response_status shall return the current value of the response status attribute.

b) The method is_response_ok shall return true if and only if the current value of the response status
attribute is TLM_OK_RESPONSE. The method is_response_error shall return true if and only if the
current value of the response status attribute is not equal to TLM_OK_RESPONSE.

c) The method get_response_string shall return the current value of the response status attribute as a text
string.

d) As a general principle, a target is recommended to support every feature of the generic payload, but in the
case that it does not, it shall generate the standard error response. See clause 6.16.1 The standard error
response

e) The response status attribute shall be set to TLM_INCOMPLETE_RESPONSE by the initiator, and may
be overwritten by the target. The response status attribute should not be overwritten by any interconnect
component, because the default value TLM_INCOMPLETE_RESPONSE indicates that the transaction
was not delivered to the target.

f) The target may set the response status attribute to TLM_OK_RESPONSE to indicate that it was able to
execute the command successfully, or to one of the five error responses listed in the table below to
indicate an error. The target should choose the appropriate error response depending on the cause of the
error.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 85

Error response Interpretation

TLM_ADDRESS_ERROR_RESPONSE Unable to act upon the address attribute, or address out-
of-range

TLM_COMMAND_ERROR_RESPONSE Unable to execute the command

TLM_BURST_ERROR_RESPONSE Unable to act upon the data length or streaming width

TLM_BYTE_ENABLE_ERROR_RESPONSE Unable to act upon the byte enable

TLM_GENERIC_ERROR_RESPONSE Any other error

g) If a target detects an error but is unable to select a specific error response, it may set the response status to
TLM_GENERIC_ERROR_RESPONSE.

h) The default value of the response status attribute shall be TLM_INCOMPLETE_RESPONSE.

i) The target shall be responsible for setting the response status attribute at the appropriate point in the
lifetime of the transaction. In the case of the blocking transport interface, this means before returning
control from b_transport. In the case of the non-blocking transport interface and the base protocol, this
means before sending the BEGIN_RESP phase or returning a value of TLM_COMPLETED.

j) It is recommended that the initiator should always check the response status attribute on receiving a
transition to the BEGIN_RESP phase or after the completion of the transaction. An initiator may choose
to ignore the response status if it is known in advance that the value will be TLM_OK_RESPONSE,
perhaps because it is known in advance that the initiator is only connected to targets that always return
TLM_OK_RESPONSE, but in general this will not be the case. In other words, the initiator ignores the
response status at its own risk.

6.16.1 The standard error response

When a target receives a generic payload transaction, the target should perform one and only one of the
following actions:

a) Execute the command represented by the transaction, honoring the semantics of the generic payload
attributes, and honoring the publicly documented semantics of the component being modeled, and set the
response status to TLM_OK_RESPONSE.

b) Set the response status attribute of the generic payload to one of the five error responses as described
above.

c) Generate a report using the standard SystemC report handler with any of the four standard SystemC
severity levels indicating that the command has failed or been ignored, and set the response status to
TLM_OK_RESPONSE.

It is recommended that the target should perform exactly one of these actions, but an implementation is not
obliged or permitted to enforce this recommendation.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)86

It is recommended that a target for a transaction type other than the generic payload should follow this same
principle, that is, execute the command as expected, or generate an error response using an attribute of the
transaction, or generate a SystemC report. However, the details of the semantics and the error response
mechanism for such a transaction are outside the scope of this standard.

The conditions for satisfying point a) above are determined by the expected behavior of the target component
as would be visible to a user of that component. The attributes of the generic payload have defined semantics
which correspond to conventional usage in the context of memory-mapped buses, but which do not
necessarily assume that the target behaves as a random-access memory. There are many subtle corner cases.
For example:

 i. A target may have a memory-mapped register that supports both read and write commands, but the
write command is non-sticky, that is, write modifies the state of the target, but a write followed by read
will not return the data just written but some other value determined by the state of the target. If this is
the normal expected behavior of the component, it is covered by point a).

 ii. A target may implement the write command to set a bit whilst totally ignore the value of the data
attribute. If this is the normal expected behavior of the target, it is covered by point a)

 iii. A read-only memory may ignore the write command without signalling an error to the initiator using
the response status attribute. Since the write command is not changing the state of the target but is
being ignored altogether, the target should at least generate a SystemC report with severity SC_INFO or
SC_WARNING.

 iv. A target should not under any circumstances implement the write command by performing a read, or
vice versa. That would be a fundamental violation of the semantics of the generic payload.

 v. A target may implement the read command according to the intent of the generic payload, but with
additional side-effects. This is covered by point a).

 vi. A target with a set of memory-mapped registers forming an addressable register file receives a write
command with an out-of-range address. The target should either set the response status attribute of the
transaction to TLM_ADDRESS_ERROR_RESPONSE or generate a SystemC report.

 vii. A passive simulation bus monitor target receives a transaction with an address that is outside the
physical range of the bus being modeled. The target may log the erroneous transaction for post-
processing under point a) and not generate an error response under points b) or c). Alternatively, the
target may generate a report under point c).

In other words, the distinction between points a), b) and c) is ultimately a pragmatic judgement to be made on
a case-by-case basis, but the definitive rule for the generic payload is that a target should always perform
exactly one of these actions.

Example

// Showing generic payload with command, address, data, and response status

// The initiator
void thread() {

tlm::tlm_generic_payload trans; // Construct default generic payload
sc_time delay;

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 87

trans.set_command(tlm::TLM_WRITE_COMMAND); // A write command
trans.set_data_length(4); // Write 4 bytes
trans.set_byte_enable_ptr(0); // Byte enables unused
trans.set_streaming_width(4); // Streaming unused

for (int i = 0; i < RUN_LENGTH; i += 4) { // Generate a series of transactions
int word = i;
trans.set_address(i); // Set the address
trans.set_data_ptr((unsigned char*)(&word)); // Write data from local variable ‘word’
trans.set_dmi_allowed(false); // Clear the DMI hint
trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE); // Clear the response status

init_socket->b_transport(trans, delay);

if (trans.get_response_status() <= 0) // Check return value of b_transport
SC_REPORT_ERROR("TLM-2", trans.get_response_string().c_str());

...
}
...

// The target
virtual void b_transport(tlm::tlm_generic_payload& trans, sc_core::sc_time& t)
{

tlm::tlm_command cmd = trans.get_command();
sc_dt::uint64 adr = trans.get_address();
unsigned char* ptr = trans.get_data_ptr();
unsigned int len = trans.get_data_length();
unsigned char* byt = trans.get_byte_enable_ptr();
unsigned int wid = trans.get_streaming_width();

if (adr+len > m_length) { // Check for storage address overflow
trans.set_response_status(tlm::TLM_ADDRESS_ERROR_RESPONSE);
return;

}
if (byt) { // Target unable to support byte enable attribute

trans.set_response_status(tlm::TLM_BYTE_ENABLE_ERROR_RESPONSE);
return;

}
if (wid < len) { // Target unable to support streaming width attribute

trans.set_response_status(tlm::TLM_BURST_ERROR_RESPONSE);
return;

}

if (cmd == tlm::TLM_WRITE_COMMAND) // Execute command
memcpy(&m_storage[adr], ptr, len);

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)88

else if (cmd == tlm::TLM_READ_COMMAND)
memcpy(ptr, &m_storage[adr], len);

trans.set_response_status(tlm::TLM_OK_RESPONSE); // Successful completion
 }

// Showing generic payload with byte enables

// The initiator
void thread() {

tlm::tlm_generic_payload trans;
sc_time delay;

static word_t byte_enable_mask = 0x0000fffful; // MSB..LSB regardless of host-endianness

trans.set_command(tlm::TLM_WRITE_COMMAND);
trans.set_data_length(4);
trans.set_byte_enable_ptr(reinterpret_cast<unsigned char*>(&byte_enable_mask));
trans.set_byte_enable_length(4);
trans.set_streaming_width(4);
...

...
// The target
virtual void b_transport(

tlm::tlm_generic_payload& trans, sc_core::sc_time& t)
{

tlm::tlm_command cmd = trans.get_command();
sc_dt::uint64 adr = trans.get_address();
unsigned char* ptr = trans.get_data_ptr();
unsigned int len = trans.get_data_length();
unsigned char* byt = trans.get_byte_enable_ptr();
unsigned int bel = trans.get_byte_enable_length();
unsigned int wid = trans.get_streaming_width();

if (cmd == tlm::TLM_WRITE_COMMAND) {
if (byt) {

for (unsigned int i = 0; i < len; i++) // Byte enable applied repeatedly up data array
if (byt[i % bel] == TLM_BYTE_ENABLED)

m_storage[adr+i] = ptr[i]; // Byte enable [i] corresponds to data ptr [i]
}
else

memcpy(&m_storage[adr], ptr, len); // No byte enables
} else if (cmd == tlm::TLM_READ_COMMAND) {

if (byt) { // Target does not support read with byte enables
trans.set_response_status(tlm::TLM_BYTE_ENABLE_ERROR_RESPONSE);

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 89

return;
}
else

memcpy(ptr, &m_storage[adr], len);
}
trans.set_response_status(tlm::TLM_OK_RESPONSE);

 }

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)90

6.17 Endianness

6.17.1 Introduction

When using the generic payload to transfer data between initiator and target, both the endianness of the host
machine (host endianness) and the endianness of the initiator and target being modeled (modeled endianness)
are relevant. This clause defines rules to ensure interoperability between initiators and targets using the
generic payload, so is specifically concerned with the organisation of the generic payload data array and byte
enable array. However, the rules given here may have an impact on some of the choices made in modeling
endianness beyond the immediate scope of the generic payload.

A general principle in the TLM-2 approach to endianness is that the organisation of the generic payload data
array depends only on information known locally within each initiator, interconnect component or target. In
particular, it depends on the width of the local socket through which the transaction is sent or received, the
endianness of the host computer, and the endianness of the component being modeled.

The organisation of the generic payload and the approach to endianness has been chosen to maximize
simulation efficiency in certain common system scenarios, particularly mixed-endian systems. The rules
given below dictate the organisation of the generic payload, and this is independent of the organisation of the
system being modeled. For example, a “word” within the generic payload need not necessarily correspond in
internal representation with any “word” within the modeled architecture.

At a macroscopic level, the main principle is that the generic payload assumes components in a mixed-endian
system to be wired up MSB to MSB (most-significant byte), and LSB to LSB (least-significant byte). In other
words, if a word is transferred between components of differing endianness, the MSB ... LSB relationship is
preserved, but the local address of each byte as seen within each component will necessarily change using the
transformation generally called address swizzling. This is true within both the modeled system and the TLM-2
model. On the other hand, if a mixed-endian system is wired such the local addresses are invariant within
each component (that is, each byte has the same local address when seen from any component), then an
explicit byte swap would need to be inserted in the TLM-2 model.

A set of helper functions are provided to assist with the organisation of the data array. See clause 6.19 Helper
functions for endianness conversion

6.17.2 Rules

a) In the following rules, the generic payload data array is denoted as data and the generic payload byte
enable array as be.

b) When using the standard socket classes of the interoperability layer (or classes derived from these), the
contents of the data and byte enable arrays shall be interpreted using the BUSWIDTH template parameter
of the socket through which the transaction is sent or received locally. The effective word length shall be
calculated as (BUSWIDTH + 7)/8 bytes, and in the following rules is denoted as W.

c) This quantity W defines the length of a word within the data array, each word being the amount of data
that could be transferred through the local socket on a single beat. The data array may contain a single
word, a part-word, or several contiguous words or part-words. Only the first and last words in the data

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 91

array may be part-words. This description refers to the internal organisation of the generic payload, not to
the organisation of the architecture being modeled.

d) If a given generic payload transaction object is passed through sockets of different widths, the data array
word length would appear different when calculated from the point of view of different sockets (see the
description of width conversion below).

e) The order of the bytes within each word of the data array shall be host-endian. That is, on a little-endian
host processor, within any given word data[n] shall be less significant than data[n+1], and on a big-
endian host processor, data[n] shall be the more significant than data[n+1].

f) The word boundaries in the data array shall be address-aligned, that is, they shall fall on addresses that
are integer multiples of the word length W. However, neither the address attribute nor the data length
attribute are required to be multiples of the word length. Hence the possibility that the first and last words
in the data array could be part-words.

g) The order of the words within the data array shall be determined by their addresses in the memory map of
the modeled system. For array index values less than the value of the streaming width attribute, the local
addresses of successive words shall be in increasing order, and (excluding any leading part-word) shall
equal address_attribute - (address_attribute % W) + NW, where N is a non-negative integer, and %
indicates remainder on division.

h) In other words, using the notation {a,b,c,d} to list the elements of the data array in increasing order of
array index, and using LSBN to denote the least significant byte of the Nth word, on a little-endian host
bytes are stored in the order {..., MSB0, LSB1, ..., MSB1, LSB2, ...}, and on a big-endian host {... LSB0,
MSB1, ... LSB1, MSB2, ...}, where the number of bytes in each full word is given by W, and the total
number of bytes is given by the data_length attribute.

i) The above rules effectively mean that initiators and targets are connected LSB-to-LSB, MSB-to-MSB.
The rules have been chosen to give optimal simulation speed in the case where the majority of initiators
and targets are modeled using host endianness whatever their native endianness, also known as
“arithmetic mode”.

j) It is strongly recommended that applications should be independent of host endianness, that is, should
model the same behavior when run on a host of either endianness. This may require the use of helper
functions or conditional compilation.

k) If an initiator or target is modeled using its native endianness and that is different from host endianness, it
will be necessary to swap the order of bytes within a word when transferring data to or from the generic
payload data array. Helper functions are provided for this purpose.

l) For example, consider the following SystemC code fragment, which uses the literal value
0xAABBCCDD to initialize the generic payload data array:

int data = 0xAABBCCDD;
trans.set_data_ptr(reinterpret_cast<unsigned char*>(&data));
trans.set_data_length(4);
trans.set_address(0);
socket->b_transport(trans, delay);

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)92

m) The C++ compiler will interpret the literal 0xAABBCCDD in host-endian form. In either case, the MSB
has value 0xAA and the LSB has value 0xDD. Assuming this is the intent, the code fragment is valid and
is independent of host endianness. However, the array index of the four bytes will differ depending on
host endianness. On a little-endian host, data[0] = 0xDD, and on a big-endian host, data[0] = 0xAA. The
correspondence between local addresses in the modeled system and array indexes will differ depending
whether modeled endianess and host endianness are equal:

Little-endian model and little-endian host: data[0] is 0xDD and local address 0
Big-endian model and little-endian host: data[0] is 0xDD and local address 3
Little-endian model and big-endian host: data[0] is 0xAA and local address 3
Big-endian model and big-endian host: data[0] is 0xAA and local address 0

n) Code such as the fragment shown above would not be portable to a host computer that uses neither little
nor big endianness. In such a case, the code would have to be re-written to access the generic payload
data array using byte addressing only.

o) When a little-endian and a big-endian model interpret a given generic payload transaction, then by
definition they will agree on which is the MSB and LSB of a word, but they will each use different local
addresses to access the bytes of the word.

p) Neither the data length attribute nor the address attribute are required to be integer multiples of W.
However, having address and data length aligned with word boundaries and having W be a power of 2
considerably simplifies access to the data array. Just to emphasize the point, it would be perfectly in order
for a generic payload transaction to have an address and data length that indicated three bytes in the
middle of a 48-bit socket. If a particular target is unable to support a given address attribute or data
length, it should generate a standard error response. See clause 6.16 Response status attribute

q) For example, on a little-endian host and with W = 4, address = 1, and data_length = 4, the first word
would contain 3 bytes at addresses 1...3, and the second word 1 byte at address 4.

r) Single byte and part-word transfers may be expressed using non-aligned addressing. For example, given
W = 8, address = 5, and data = {1,2}, the two bytes with local addresses 5 and 6 are accessed in an order
dependent on endianness.

s) Part-word and non-aligned transfers can always be expressed using integer multiples of W together with
byte enables. This implies that a given transaction may have several equally valid generic payload
representations. For example, given a little-endian host and a little-endian initiator,

address = 2, W = 4, data = {1} is equivalent to
address = 0, W = 4, data = {x, x, 1, x}, and be = {0, 0, 0xff, 0}

address = 2, W = 4, data = {1,2,3,4} is equivalent to
address = 0, W = 4, data = {x, x, 1, 2, 3, 4, x, x}, and be = {0, 0, 0xff, 0xff, 0xff, 0xff, 0, 0}.

t) For part-word access, the necessity to use byte enables is dependent on endianness. For example, given
the intent to access the whole of the first word and the LSB of the second word, given a little-endian host
this might be expressed as

address = 0, W = 4, data = {1,2,3,4,5}

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 93

Given a big-endian host, the equivalent would be

address = 0, W = 4, data = {4,3,2,1,x,x,x,5}, be = {0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0xff }.

u) When two sockets are bound together, they necessarily have the same BUSWIDTH. However, a
transaction may be forwarded from a target socket to an initiator socket of a different bus width. In this
case, width conversion of the generic payload transaction must be considered. Any width conversion has
its own intrinsic endianness, depending on whether the least- or most significant byte of the wider socket
is picked out first.

v) When the endianness chosen for a width conversion matches the host endianness, the width conversion is
effectively free, meaning that a single transaction object can be forwarded from socket-to-socket without
modification. Otherwise, two separate generic payload transaction objects would be required. In figure
14, the width conversion between the 4-byte socket and the 2-byte socket uses host-endianness, moving
the less-significant bytes to lower addresses whilst retaining the host-endian byte order within each word.
The initiator and target both access the same sequence of bytes in the data array, but their local
addressing schemes are quite different.

w) If a width conversion is performed from a narrower socket to a wider socket, the choice has to be made as
to whether or not to perform address alignment on the outgoing transaction. Performing address
alignment will always necessitate the construction of a new generic payload transaction object.

x) Similar width conversion issues arise when the streaming width attribute is non-zero but different from
W. A choice has to be made as to the order in which to read off the bytes down the data array depending
on host endianness and the desired endianness of the width conversion.

Width conversion Figure 14

Big-endian
Initiator

Little-endian
Target

LSB

Interconnect
component

W = 4
bytes

W = 2
bytes

MSB

Local
address

3
2
1
0
7
6
5
4

Local
address
0
1
2
3
4
5
6
7

Word

Word

Generic
payload
data array

LSB

MSB

Generic
payload
data array

Word

Word

Word

Word

LSB
MSB

Little-endian host

Little-endian
width
conversion

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)94

6.18 Helper functions to determine host endianness

6.18.1 Introduction

A set of helper functions is provided to determine the endianness of the host computer. These are intended for
use when creating or interpreting the generic payload data array.

6.18.2 Definition

namespace tlm {

enum tlm_endianness {
TLM_UNKNOWN_ENDIAN, TLM_LITTLE_ENDIAN, TLM_BIG_ENDIAN };

inline tlm_endianness get_host_endianness(void);
inline bool host_has_little_endianness(void);
inline bool has_host_endianness(tlm_endianness endianness);

} // namespace tlm

6.18.3 Rules

a) The function get_host_endianness shall return the endianness of the host.

b) The function host_has_little_endianness shall return the value true if and only if the host is little-endian.

c) The function has_host_endianness shall return the value true if and only if the endianness of the host is
the same as that indicated by the argument.

d) If the host is neither little- nor big-endian, the value returned from the above three functions shall be
undefined.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 95

6.19 Helper functions for endianness conversion

6.19.1 Introduction

The rules governing the organisation of the generic payload data array are well-defined, and in many simple
cases, writing host-independent C++ code to create and interpret the data array is a straightforward task.
However, the rules do depend on the relationship between the endianness of the modeled component and host
endianness, so creating host-independent code can become quite complex in cases involving non-aligned
addressing and data word widths that differ from the socket width. A set of helper functions is provided to
assist with this task.

With respect to endianness, interoperability depends only on the endianness rules being followed. Use of the
helper functions is not essential for interoperability.

The motivation behind the endianness conversion functions is to permit the C++ code that creates a generic
payload transaction for an initiator to be written once with little regard for host endianness, and then to have
the transaction converted to match host endianness with a single function call. Each conversion function takes
an existing generic payload transaction and modifies that transaction in-place. The conversion functions are
organised in pairs, a to_hostendian function and a from_hostendian function, which should always be used
together. The to_hostendian function should be called by an initiator before sending a transaction through a
transport interface, and from_hostendian on receiving back the response.

Four pairs of functions are provided, the _generic pair being the most general and powerful, and the _word,
_aligned and _single functions being variants that can only handle restricted cases. The transformation
performed by the _generic functions is relatively computationally expensive, so the other functions should be
preferred for efficiency wherever possible.

The conversion functions provide sufficient flexibility to handle many common cases, including both
arithmetic mode and byte order mode. Arithmetic mode is where a component stores data words in host-
endian format for efficiency when performing arithmetic operations, regardless of the endianness of the
component being modeled. Byte order mode is where a component stores bytes in an array in ascending
address order, disregarding host endianness. The use of arithmetic mode is recommended for simulation
speed. Byte order mode may necessitate byte swapping when copying data to and from the generic payload
data array.

The conversion functions use the concept of a data word. The data word is independent of both the TLM-2
socket width and the word width of the generic payload data array. The data word is intended to represent a
register that stores bytes in host-endian order within the component model (regardless of the endianness of the
component being modeled). If the data word width is different to the socket width, the hostendian functions
may have to perform an endianness conversion. If the data word is just one byte wide, the hostendian
functions will effectively perform a conversion from and to byte order mode.

In summary, the approach to be taken with the hostendian conversion functions is to write the initiator code
as if the endianness of the host computer matched the endianness of the component being modeled, while
keeping the bytes within each data word in actual host-endian order. For data words wider than the host
machine word length, use an array in host-endian order. Then if host endianness differs from modeled
endianness, simply call the hostendian conversion functions.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)96

6.19.2 Definition

namespace tlm {

template<class DATAWORD>
inline void tlm_to_hostendian_generic(tlm_generic_payload *, unsigned int);
template<class DATAWORD>
inline void tlm_from_hostendian_generic(tlm_generic_payload *, unsigned int);

template<class DATAWORD>
inline void tlm_to_hostendian_word(tlm_generic_payload *, unsigned int);
template<class DATAWORD>
inline void tlm_from_hostendian_word(tlm_generic_payload *, unsigned int);

template<class DATAWORD>
inline void tlm_to_hostendian_aligned(tlm_generic_payload *, unsigned int);
template<class DATAWORD>
inline void tlm_from_hostendian_aligned(tlm_generic_payload *, unsigned int);

template<class DATAWORD>
inline void tlm_to_hostendian_single(tlm_generic_payload *, unsigned int);
template<class DATAWORD>
inline void tlm_from_hostendian_single(tlm_generic_payload *, unsigned int);

inline void tlm_from_hostendian(tlm_generic_payload *);

} // namespace tlm

6.19.3 Rules

a) The first argument to a function of the form to_hostendian should be a pointer to a generic payload
transaction object that would be valid if it were sent through a transport interface. The function should
only be called after constructing and initializing the transaction object and before passing it to an
interface method call.

b) The first argument to a function of the form from_hostendian shall be a pointer to a generic payload
transaction object previously passed to to_hostendian. The function should only be called when the
initiator receives a response for the given transaction or the transaction is complete. Since the function
may modify the transaction and its arrays, it should only be called at the end of the lifetime of the
transaction object.

c) If a to_hostendian function is called for a given transaction, the corresponding from_hostendian function
should also be called with the same template and function arguments. Alternatively, the function
tlm_from_hostendian(tlm_generic_payload *) can be called for the given transaction. This function uses
additional context information stored with the transaction object (as an ignorable extension) to recover
the template and function argument values, but is marginally slower in execution.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 97

d) The second argument to a hostendian function should be the width of the local socket through which the
transaction is passed, expressed in bytes. This is equivalent to the word length of the generic payload data
array with respect to the local socket. This shall be a power of 2.

e) The template argument to a hostendian function should be a type representing the internal initiator data
word for the endianness conversion. The expression sizeof(DATAWORD) is used to determine the width
of the data word in bytes, and the assignment operator of type DATAWORD is used during copying.
sizeof(DATAWORD) shall be a power of 2.

f) The implementation of to_hostendian adds an extension to the generic payload transaction object to store
context information. This means that to_hostendian can only be called once before calling
from_hostendian.

g) The following constraints are common to every pair of hostendian functions. The term integer multiple
means 1 x , 2 x , 3 x , ... and so forth:

Socket width shall be a power of 2

Data word width shall be a power of 2

The streaming width attribute shall be an integer multiple of the data word width

The data length attribute shall be an integer multiple of the streaming width attribute

h) The hostendian_generic functions are not subject to any further specific constraints. In particular, they
support byte enables, streaming, and non-aligned addresses and word widths.

i) The remaining pairs of functions, namely hostendian_word, hostendian_aligned, and hostendian_single,
all share the following additional constraints:

Data word width shall be no greater than socket width, and as a consequence, socket width shall be a
power-of-2 multiple of data word width.

The streaming width attribute shall equal the data length attribute. That is, streaming is not
supported.

Byte enable granularity shall be no finer than data word width. That is, the bytes in a given data word
shall be either all enabled or all disabled.

If byte enables are present, the byte enable length attribute shall equal the data length attribute.

j) The hostendian_aligned functions alone are subject to the following additional constraints:

The address attribute shall be an integer multiple of the socket width.

The data length attribute shall be an integer multiple of the socket width.

k) The hostendian_single functions alone are subject to the following additional constraints:

The data length attribute shall equal the data word width.

The data array shall not cross a data word boundary, and as a consequence, shall not cross a socket
boundary.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)98

6.20 Generic payload extensions

6.20.1 Introduction

The extension mechanism is an integral part of the generic payload, and cannot be used separately from the
generic payload. Its purpose is to permit attributes to be added to the generic payload.

Extensions can be ignorable or mandatory. An ignorable extension is an extension that may be ignored by any
or all interconnect components or targets that receive the generic payload transaction. The main intent of
ignorable extensions is to model auxiliary information, simulation artefacts, side-band information, or meta-
data that do not have a direct effect on the functionality of the downstream components. Ignorable extensions
are permitted by the base protocol. A mandatory extension is an extension that any interconnect component or
target receiving the transaction is obliged to inspect and to act upon. The main intent of mandatory extension
is for use when specializing the generic payload to model the details of a specific protocol. Mandatory
extensions require the definition of a new protocol types class.

In other words, from the point of view of an initiator, an extension should be considered mandatory if and
only if it changes the functional meaning of any of the standard generic payload transaction attributes or
changes any of the rules of the base protocol. From the point of view of a target, an extension should be
considered mandatory if and only if there is no appropriate default value for the extension that could be used
if the extension were absent.

6.20.2 Rationale

The rationale behind the extension mechanism is to permit TLM ports or sockets that carry variations on the
core attribute set of the generic payload to be specialized with the same transaction type, thus allowing them
to be bound together directly with no need for adaption or bridging. Without the extension mechanism, the
addition of any new attribute to the generic payload would require the definition of a new protocol class,
leading to a new template specialization of the core interface class, which would be type-incompatible with
the generic payload and with any other such specialization. The extension mechanism allows minor variations
to be introduced into the generic payload without breaking the type compatibility of TLM ports, thus reducing
the amount of coding work that needs to be done to connect ports that carry slightly different information.

6.20.3 Extension pointers, objects and bridges

An extension is an object of a type derived from the class tlm_extension. The generic payload contains an
array of pointers to extension objects. Every generic payload object is capable of carrying a single instance of
every type of extension.

The array-of-pointers to extensions has a slot for every registered extension. The set_extension method
simply overwrites a pointer, and in principle can be called from an initiator, interconnect component, or
target. This provides a very a flexible low-level mechanism, but is open to misuse. The ownership and
deletion of extension objects has to be well-understood and carefully considered by the user.

When creating a bridge between two separate generic payload transactions, it is the responsibility of the
bridge to copy any extensions, if required, from the incoming transaction object to the outgoing transaction

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 99

object, and to own and manage the outgoing transaction and its extensions. (The same holds for the data array
and byte enable array.) The method deep_copy_from is provided so that a bridge can perform a deep copy of
a transaction object, including the data and byte enable arrays and the extension objects. If the bridge adds
further extensions to the outgoing transaction, those extensions would be owned by the bridge.

The management of extensions is described more fully in clause 6.5 Generic payload memory management.

6.20.4 Rules

a) An extension can be added by an initiator, interconnect or target component. In particular, the creation of
extensions is not restricted to initiators.

b) Any number of extensions may be added to each instance of the generic payload.

c) In the case of an ignorable extension, it is recommended that any interconnect or target component
should be free to ignore the given extension, but this cannot and should not be enforced by the
implementation. Having an interconnect or target component generate a standard error response because
of the absence of an extension is possible, but is not recommended practice.

d) In the case of an ignorable extension, it is recommended that the presence or absence of a given extension
should have no effect on the primary functionality of any component, but may, for example, have an
effect on diagnostic reporting, debug, or optimization.

e) There is no built-in mechanism to enforce the presence of a given extension.

f) The semantics of each extension are application-defined. There are no pre-defined extensions.

g) An extension shall be created by deriving a user-defined class from the class tlm_extension, passing the
name of the user-defined class itself as a template argument to tlm_extension, then creating an object of
that class. The user-defined extension class may include members which represent extended attributes of
the generic payload.

h) The virtual method free of the class tlm_extension_base shall delete the extension object. This method
may be overridden to implement user-defined memory management of extension, but this is not
necessary.

i) The pure virtual function clone of class tlm_extension shall be defined in the user-defined extension
class to clone the extension object, including any extended attributes. This clone method is intended for
use in conjunction with generic payload memory management. It shall create a copy of any extension
object such that the copy can survive the destruction of the original object with no visible side-effects.

j) The pure virtual function copy_from of class tlm_extension shall be defined in the user-defined
extension class to modify the current extension object by copying the attributes of another extension
object.

k) The act of instantiating the class template tlm_extension shall cause the public data member ID to be
initialized, and this shall have the effect of registering the given extension with the generic payload object
and assigning a unique ID to the extension. The ID shall be unique across the whole executing program.

l) The generic payload shall behave as if it stored pointers to the extensions in a re-sizable array, where the
ID of the extension gives the index of the extension pointer in the array. Registering the extension with
the generic payload shall reserve an array index for that extension. Each generic payload object shall

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)100

contain an array capable of storing pointers to every extension registered in the currently executing
program.

m) The pointers in the extension array shall be null when the transaction is constructed.

n) Each generic payload object can store a pointer to at most one object of any given extension type (but to
many objects of different extensions types).

o) The methods set_extension, set_auto_extension, get_extension, clear_extension, and
release_extension are provided in several forms, each of which identify the extension to be accessed in
different ways: using a function template, using an extension pointer argument, or using an ID argument.
The functions with an ID argument are intended for specialist programming tasks such as when cloning a
generic payload object, and not for general use in applications.

p) The method set_extension(T*) shall replace the pointer to the extension object of type T in the array-of-
pointers with the value of the argument. The argument shall be a pointer to a registered extension. The
return value of the function shall be the previous value of the pointer in the generic payload that was
replaced by this call, which may be a null pointer. The method set_auto_extension(T*) shall behave
similarly, except that the extension shall be marked for automatic deletion.

q) The method set_extension(unsigned int, tlm_extension_base*) shall replace the pointer to the extension
object in the array-of-pointers at the array index given by the first argument with the value of the second
argument. The given index shall have been registered as an extension ID, otherwise the behavior of the
function is undefined. The return value of the function shall be the previous value of the pointer at the
given array index, which may be a null pointer. The method set_auto_extension(unsigned int,
tlm_extension_base*) shall behave similarly, except that the extension shall be marked for automatic
deletion

r) In the presence of a memory manager, a call to set_auto_extension for a given extension is equivalent to
a call to set_extension immediatedly followed by a call to release_extension for that same extension. In
the absence of a memory manager, a call to set_auto_extension will cause a run-time error.

s) If an extension is marked for automatic deletion, the given extension object should be deleted or pooled
by the implementation of the method free of a user-defined memory manager. Method free is called
when the reference count of the transaction object reaches 0. The extension object may be deleted by
calling the method reset of class tlm_generic_payload or the method free of the extension object, or
may be pooled.

t) If the generic payload object already contained a non-null pointer to an extension of the type being set,
then the old pointer is overwritten.

u) The method functions get_extension(T*&) and T* get_extension() shall each return a pointer to the
extension object of the given type, if it exists, or a null pointer if it does not exist. The type T shall be a
pointer to an object of a type derived from tlm_extension. It is not an error to attempt to retrieve a non-
existent extension using this function template.

v) The method get_extension(unsigned int) shall return a pointer to the extension object with the ID given
by the argument. The given index shall have been registered as an extension ID, otherwise the behavior
of the function is undefined. If the pointer at the given index does not point to an extension object, the
function shall return a null pointer.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 101

w) The methods clear_extension(const T*) and clear_extension() shall remove the given extension from
the generic payload object, that is, shall set the corresponding pointer in the extension array to null. The
extension may be specified either by passing a pointer to an extension object as an argument, or by using
the function template parameter type, for example clear_extension<ext_type>(). If present, the argument
shall be a pointer to an object of a type derived from tlm_extension. Method clear_extension shall not
delete the extension object.

x) The methods release_extension(T*) and release_extension() shall mark the extension for automatic
deletion if the transaction object has a memory manager, or otherwise shall delete the given extension by
calling the method free of the extension object and setting the corresponding pointer in the extension
array to null. The extension may be specified either by passing a pointer to an extension object as an
argument, or by using the function template parameter type, for example
release_extension<ext_type>(). If present, the argument shall be a pointer to an object of a type derived
from tlm_extension.

y) Note that the behavior of method release_extension depends upon whether or not the transaction object
has a memory manager. With a memory manager, the extension is merely marked for automatic deletion,
and continues to be accessible. In the absence of a memory manager, not only is the extension pointer
cleared but also the extension object itself is deleted. Care should be taken not to release a non-existent
extension object, because doing so will result in a run-time error.

z) The methods clear_extension and release_extension shall not be called for extensions marked for
automatic deletion, for example, an extension set using set_auto_extension or already released using
release_extension. Doing so may result in a run-time error.

aa) Each generic payload transaction should allocate sufficient space to store pointers to every registered
extension. This can be achieved in one of two ways, either by constructing the transaction object after
C++ static initialization, or by calling the method resize_extensions after static initialization but before
using the transaction object for the first time. In the former case, it is the responsibility of the generic
payload constructor to set the size of the extension array. In the latter case, it is the responsibility of the
application to call resize_extensions before accessing the extensions for the first time.

bb) The method resize_extensions shall increase the size of the extensions array in the generic payload to
accommodate every registered extension.

Example

// Showing an ignorable extension

// User-defined extension class
struct ID_extension: tlm::tlm_extension<ID_extension>
{

ID_extension() : transaction_id(0) {}

virtual tlm_extension_base* clone() const { // Must override pure virtual clone method
ID_extension* t = new ID_extension;
t->transaction_id = this->transaction_id;
return t;

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)102

}
// Must override pure virtual copy_from method

virtual void copy_from(tlm_extension_base const &ext) {
transaction_id = static_cast<ID_extension const &>(ext).transaction_id;

}
unsigned int transaction_id;

};

// The initiator
struct Initiator: sc_module
{ ...

void thread() {
tlm::tlm_generic_payload trans;
...
ID_extension* id_extension = new ID_extension;
trans.set_extension(id_extension); // Add the extension to the transaction

for (int i = 0; i < RUN_LENGTH; i += 4) {
...
++ id_extension->transaction_id; // Increment the id for each new transaction
...
socket->b_transport(trans, delay);
...

// The target
virtual void b_transport(tlm::tlm_generic_payload& trans, sc_core::sc_time& t)
{ ...

ID_extension* id_extension;
trans.get_extension(id_extension); // Retrieve the extension
if (id_extension) { // Extension is not mandatory

char txt[80];
sprintf(txt, "Received transaction id %d", id_extension->transaction_id);
SC_REPORT_INFO("TLM-2", txt);

 }
...

// Showing a new protocol types class with a mandatory extension

struct cmd_extension: tlm::tlm_extension<cmd_extension>
{ // User-defined mandatory extension class

cmd_extension(): increment(false) {}
virtual tlm_extension_base* clone() const {

cmd_extension* t = new cmd_extension;
t->increment = this->increment;
return t;

}

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 103

virtual void copy_from(tlm_extension_base const &ext) {
increment = static_cast<cmd_extension const &>(ext).increment;

}
bool increment;

};

struct my_protocol_types // User-defined protocol types class
{
 typedef tlm::tlm_generic_payload tlm_payload_type;
 typedef tlm::tlm_phase tlm_phase_type;
};

struct Initiator: sc_module
{

tlm_utils::simple_initiator_socket<Initiator, 32, my_protocol_types> socket;
...
void thread() {

tlm::tlm_generic_payload trans;
cmd_extension* extension = new cmd_extension;
trans.set_extension(extension); // Add the extension to the transaction
...
trans.set_command(tlm::TLM_WRITE_COMMAND); // Execute a write command
socket->b_transport(trans, delay);
...
trans.set_command(tlm::TLM_IGNORE_COMMAND);
extension->increment = true; // Execute an increment command
socket->b_transport(trans, delay);
...

...

// The target
tlm_utils::simple_target_socket<Memory, 32, my_protocol_types> socket;

virtual void b_transport(tlm::tlm_generic_payload& trans, sc_core::sc_time& t)
{

tlm::tlm_command cmd = trans.get_command();
...
cmd_extension* extension;
trans.get_extension(extension); // Retrieve the command extension
...
if (!extension) { // Check the extension exists

trans.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);
return;

}
if (extension->increment) {

if (cmd != tlm::TLM_IGNORE_COMMAND) { // Detect clash with read or write

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)104

trans.set_response_status(tlm::TLM_GENERIC_ERROR_RESPONSE);
return;

}
++ m_storage[adr]; // Execute an increment command
 memcpy(ptr, &m_storage[adr], len);

}
...

6.21 Instance-specific extensions

6.21.1 Introduction

The generic payload contains an array of pointers to extension objects such that each transaction object can
contain at most one instance of each extension type. This mechanism alone does not directly permit multiple
instances of the same extension to be added to a given transaction object. This clause describes a set of
utilities that provide instance-specific extensions, that is, multiple extensions of the same type added to a
single transaction object.

An instance-specific extension type is created using a class template instance_specific_extension, used in a
similar manner to class tlm_extension. Unlike tlm_extension, applications are not required or permitted to
implement virtual clone and copy_from methods. The access methods are restricted to set_extension,
get_extension, clear_extension and resize_extensions. Automatic deletion of instance-specific extensions is
not supported, so a component calling set_extension should also call clear_extension. As for class
tlm_extension, method resize_extensions need only be called if a transaction object is constructed during
static initialization.

An instance-specific extension is accessed using an object of type instance_specific_extension_accessor.
This class provides a single method operator() which returns a proxy object through which the access
methods can be called. Each object of type instance_specific_extension_accessor gives access to a distinct
set of extension objects, even when used with the same transaction object.

In the class definition below, terms in italics are implementation-defined names that should not be used
directly by an application..

6.21.2 Class definition

namespace tlm_utils {

template <typename T>
class instance_specific_extension : public implementation-defined {
public:

virtual ~instance_specific_extension();
};

template<typename U>

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 105

class proxy {
public:

template <typename T> T* set_extension(T* ext);
template <typename T> void get_extension(T*& ext) const;
template <typename T> void clear_extension(const T* ext);
void resize_extensions();

};

class instance_specific_extension_accessor {
public:

instance_specific_extension_accessor();

template<typename T> proxy< implementation-defined >& operator() (T&);
};

} // namespace tlm_utils

Example

struct my_extn : tlm_utils::instance_specific_extension<my_extn> {
 int num; // User-defined extension attribute
};

struct Interconnect: sc_module
{

tlm_utils::simple_target_socket<Interconnect> targ_socket;
tlm_utils::simple_initiator_socket<Interconnect> init_socket;
...
tlm_utils::instance_specific_extension_accessor accessor;
static int count;

virtual tlm::tlm_sync_enum nb_transport_fw(
tlm::tlm_generic_payload& trans, tlm::tlm_phase& phase, sc_time& delay)

{
my_extn* extn;
accessor(trans).get_extension(extn); // Get existing extension
if (extn) {

accessor(trans).clear_extension(extn); // Delete existing extension
} else {

extn = new my_extn;
extn->num = count++;
accessor(trans).set_extension(extn); // Add new extension

}
return init_socket->nb_transport_fw(trans, phase, delay);

 } ...

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)106

};

... SC_CTOR(Top) {
// Transaction object passes through two instances of Interconnect
interconnect1 = new Interconnect("interconnect1");
interconnect2 = new Interconnect("interconnect2");
interconnect1->init_socket.bind(interconnect2->targ_socket);
...

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 107

7 Phases and base protocol

7.1 Phases

7.1.1 Introduction

Class tlm_phase is the default phase type used by the non-blocking transport interface class templates and the
base protocol. A tlm_phase object represents the phase with an unsigned int value. Class tlm_phase is
assignment compatible with type unsigned int and with an enumeration having values corresponding to the
four phases of the base protocol, namely BEGIN_REQ, END_REQ, BEGIN_RESP, and END_RESP.
Because type tlm_phase is a class rather than an enumeration, it is able to support an overloaded stream
operator to display the value of the phase as ASCI text.

The set of four phases provided by tlm_phase_enum can be extended using the macro
DECLARE_EXTENDED_PHASE. This macro creates a singleton class derived from tlm_phase with a
method get_phase that returns the corresponding object. That object can be used as a new phase.

For maximal interoperability, an application should only use the four phases of tlm_phase_enum. If further
phases are required in order to model the details of a specific protocol, the intent is that
DECLARE_EXTENDED_PHASE should be used, since this retains assignment compatibility with type
tlm_phase.

The principle of ignorable versus mandatory extensions applies to phases in the same way as to generic
payload extensions. In other words, ignorable phases are permitted by the base protocol. An ignorable phase
has to be both ignorable by the target in the sense that the target can simply act as if it had not seen the phase
transition, and ignorable by the initiator in the sense that the initiator can continue in the absence of any
response from the target. If a phase cannot be ignored in this sense, a new protocol types class should be
defined. See clause 6.2.2 Define a new protocol types class containing a typedef for tlm_generic_payload.

7.1.2 Class definition

namespace tlm {

enum tlm_phase_enum {
UNINITIALIZED_PHASE=0, BEGIN_REQ=1, END_REQ, BEGIN_RESP, END_RESP };

class tlm_phase{
public:

tlm_phase();
tlm_phase(unsigned int);
tlm_phase(const tlm_phase_enum&);
tlm_phase& operator= (const tlm_phase_enum&);
operator unsigned int() const;

};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)108

inline std::ostream& operator<< (std::ostream& , const tlm_phase&);

#define DECLARE_EXTENDED_PHASE(name_arg) \
class tlm_phase_##name_arg : public tlm::tlm_phase{ \
public:\

static const tlm_phase_##name_arg& get_phase();\
implementation-defined \

}; \
static const tlm_phase_##name_arg& name_arg=tlm_phase_##name_arg::get_phase()

} // namespace tlm

7.1.3 Rules

a) The default constructor tlm_phase shall set the value of the phase to 0, corresponding to the enumeration
literal UNINITIALIZED_PHASE.

b) The methods tlm_phase(unsigned int), operator= and operator unsigned int shall get or set the value
of the phase using the corresponding unsigned int or enum.

c) The function operator<< shall write a character string corresponding to the name of the phase to the
given output stream. For example “BEGIN_REQ”.

d) The macro DECLARE_EXTENDED_PHASE(arg) shall create a new singleton class named
tlm_phase_arg, derived from tlm_phase, and having a public method get_phase that returns a reference
to the static object so created. The macro argument shall be used as the character string written by
operator<< to denote the corresponding phase.

e) The intent is that the object denoted by the static const name_arg represents the extended phase that may
be passed as a phase argument to nb_transport.

f) If an extended phase cannot be ignored by any component that receives it, the application should define a
new protocol types class and use the name of that class as a template argument when instantiating
associated sockets. This is in order to prevent the binding of sockets that represent incompatible
protocols.

g) A transition to an ignorable phase may simply be ignored by any recipient. In the case of a call to
nb_transport, if the callee is ignoring the phase transition is should return the value TLM_ACCEPTED.

Example

DECLARE_EXTENDED_PHASE(ignore_me); // Declare two extended phases
DECLARE_EXTENDED_PHASE(internal_ph); // Only used within target

struct Initiator: sc_module
{ ...

{ ...

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 109

phase = tlm::BEGIN_REQ;
delay = sc_time(10, SC_NS);
socket->nb_transport_fw(trans, phase, delay); // Send phase BEGIN_REQ to target

phase = ignore_me; // Set phase variable to the extended phase
delay = sc_time(12, SC_NS);
socket->nb_transport_fw(trans, phase, delay); // Send the extended phase 2ns later
...

struct Target: sc_module
{

...
SC_CTOR(Target)
: m_peq("m_peq", this, &Target::peq_cb) {} // Register callback with PEQ

virtual tlm::tlm_sync_enum nb_transport_fw(tlm::tlm_generic_payload& trans,
tlm::tlm_phase& phase, sc_time& delay) {

cout << "Phase = " << phase << endl; // use overloaded operator<< to print phase
m_peq.notify(trans, phase, delay); // Move transaction to internal queue
return tlm::TLM_ACCEPTED;

}

void peq_cb(tlm::tlm_generic_payload& trans, const tlm::tlm_phase& phase)
{ // PEQ callback

sc_time delay;
tlm::tlm_phase phase_out;
if (phase == tlm::BEGIN_REQ) { // Received BEGIN_REQ from initiator

phase_out = tlm::END_REQ;
delay = sc_time(10, SC_NS);
socket->nb_transport_bw(trans, phase_out, delay); // Send END_REQ back to initiator

phase_out = internal_ph; // Use extended phase to signal internal event
delay = sc_time(15, SC_NS);
m_peq.notify(trans, phase_out, delay); // Put internal event into PEQ

}
else if (phase == internal_ph) // Received internal event
{

phase_out = tlm::BEGIN_RESP;
delay = sc_time(10, SC_NS);
socket->nb_transport_bw(trans, phase_out, delay); // Send BEGIN_RESP back to initiator

}
} // Ignore phase ignore_me from initiator

tlm_utils::peq_with_cb_and_phase<Target, tlm::tlm_base_protocol_types> m_peq;
};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)110

7.2 Base protocol

7.2.1 Introduction

The base protocol consist of a set of rules to ensure maximal interoperability between transaction level
models of components that interface to memory-mapped buses. The base protocol requires the use of:

1. The TLM-2 core transport, direct memory and debug transport interfaces

2. The socket classes tlm_initiator_socket and tlm_target_socket (or classes derived from these)

3. The generic payload class tlm_generic_payload

4. The phase class tlm_phase

5. A further set of rules defined below

The base protocol rules permit extensions to the generic payload and to the phases only if that those
extensions are ignorable. Non-ignorable extensions require the definition of a new protocol types class.

The base protocol is represented by the pre-defined class tlm_base_protocol_types. However, this class
contains nothing but two type definitions. All components that use this class (as template argument to a
socket) are obliged by convention to respect the rules of the base protocol.

7.2.2 Class definition

namespace tlm {

struct tlm_base_protocol_types
{
 typedef tlm_generic_payload tlm_payload_type;
 typede tlm_phase tlm_phase_type;
};

} // namespace tlm

7.2.3 Base protocol phase sequences

a) This clause is specific to the base protocol, but may be used as a guide when using the non-blocking
transport interface to model other protocols. In order to model other protocols it may be necessary to
define other phases, but doing so may result in a loss of interoperability with the base protocol.

b) The base protocol permits the use of the blocking transport interface, the non-blocking transport
interface, or both together. The blocking transport interface does not carry phase information. When used
with the base protocol, there are strong constraints governing the order of calls to nb_transport, but no
such constraints governing the order of calls to b_transport. Hence nb_transport is appropriate for the
approximately-timed coding style, and b_transport for the loosely-timed coding style

c) The full sequence of phase transitions is:

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 111

BEGIN_REQ → END_REQ → BEGIN_RESP → END_RESP

d) BEGIN_REQ and END_RESP shall be sent through initiator sockets only, END_REQ and
BEGIN_RESP through target sockets only.

e) In the case of the blocking transport interface, a single call to and return from b_transport shall describe
the entire lifetime of one transaction instance. Any correspondence between the call to b_transport and
BEGIN_REQ, or the return from b_transport and BEGIN_RESP, is purely notional.

f) For the base protocol, each call to nb_transport and each return from nb_transport with a value of
TLM_UPDATED shall mark a phase transition. In other words, two consecutive calls to nb_transport for
the same transaction shall have different values for the phase argument. Ignorable phase extensions are
permitted, in which case the insertion of an extended phase shall count as a phase transition for the
purposes of this rule, even if the phase is ignored.

g) The phase sequence can be cut short by having nb_transport return a value of TLM_COMPLETED. A
return value of TLM_COMPLETED indicates the end of the transaction, in which case the phase
argument should be ignored (see clause 4.1.2.7 The tlm_sync_enum return value). TLM_COMPLETED
does not imply successful completion, so the initiator should check the response status of the transaction
for success or failure. A transition to the phase END_RESP shall also indicate the end of the transaction,
in which case the callee is not obliged to return a value of TLM_COMPLETED.

h) If an initiator receives a BEGIN_RESP from a target without having first received an END_REQ, the
initiator shall assume an implicit END_REQ immediately preceding the BEGIN_RESP.

Examples of early completion Figure 15

Initiator Target

-, BEGIN_REQ, 0ns

TLM_COMPLETED, -, -

Call

Return

TLM_COMPLETED, -, -

-, BEGIN_RESP, 0ns Call

Return

-, BEGIN_REQ, 0ns

TLM_ACCEPTED, -, -

Call

Return

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)112

i) Taking all the previous rules into account, the set of permitted phase transition sequences is as follows,
where the path (forward, backward or return) is shown in parenthesis. Ignorable phase extensions may be
inserted at any point. In each case the transaction may or may not have been successful.

BEGIN_REQ(fw) (target returns TLM_COMPLETED)

BEGIN_REQ(fw) → END_REQ(bw) (initiator returns TLM_COMPLETED)

BEGIN_REQ(fw) → BEGIN_RESP(bw) (initiator returns TLM_COMPLETED)

BEGIN_REQ(fw) → END_REQ(rtn/bw) → BEGIN_RESP(bw) (initiator returns TLM_COMPLETED)

BEGIN_REQ(fw) → BEGIN_RESP(rtn/bw) → END_RESP(rtn/fw)

BEGIN_REQ(fw) → END_REQ(rtn/bw) → BEGIN_RESP(bw) → END_RESP(rtn/fw)

j) If a component receives an illegal or out-of-order phase transition, this is an error on the part of the
sender. The behavior of the recipient is undefined, meaning that a run-time error may be caused.

7.2.4 Base protocol timing parameters and flow control

a) With four phases, it is possible to model the request accept delay (or minimum initiation interval between
sending successive transactions), the latency of the target, and the response accept delay. This kind of
timing granularity is appropriate for the approximately-timed coding style.

b) For the base protocol, an initiator shall not start a new transaction through a given socket with phase
BEGIN_REQ until it has received END_REQ or BEGIN_RESP from the target for the immediately
preceding transaction or until the target has completed the previous transaction by returning the value
TLM_COMPLETED from nb_transport_fw.

c) For the base protocol, a target shall not respond to a new transaction through a given socket with phase
BEGIN_RESP until it has received END_RESP from the initiator for the immediately preceding
transaction or until the initiator has completed the previous transaction by returning value
TLM_COMPLETED from nb_transport_bw.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 113

d) Successive transactions sent through a given socket using the non-blocking transport interface can be
pipelined. By responding to each BEGIN_REQ (or BEGIN_RESP) with an END_REQ (or END_RESP),
an interconnect component can permit any number of transaction objects to be in flight at the same time.
By not responding immediately with END_REQ (or END_RESP), an interconnect component can
exercise flow control over the stream of transaction objects coming from an initiator (or target).

e) This rule excluding the possibility of two outstanding requests or responses through a given socket shall
only apply to the non-blocking transport interface, and shall have no direct effect on calls to b_transport.
(The rule may have an indirect effect on a call to b_transport in the case that b_transport itself calls
nb_transport_fw.)

7.2.5 Base protocol transaction ordering rules

a) The rules in this clause apply to the base protocol, and the base protocol alone. Specific protocols
represented by other protocol types classes may have their own ordering rules.

b) There are no ordering constraints on the timing annotations of successive b_transport calls, whether for
the same transaction object or for different transaction objects. Thus the blocking transport interface is
appropriate for the loosely-timed coding style.

c) There are strong ordering constraints on the timing annotations of successive calls to nb_transport for a
given transaction object. Thus the non-blocking transport interface is appropriate for the approximately-
timed coding style.

Approximately-timed timing parameters

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Initiator Target

Request accept delay

Response accept delay

Latency of target

Figure 16

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)114

d) b_transport calls are re-entrant. The implementation of b_transport can call wait, and meanwhile
another call to b_transport can be made for the same transaction object (or a different transaction object)
through the same socket with no constraint on the timing annotation.

e) Successive calls to nb_transport through a given socket for a given transaction object shall have non-
decreasing timing annotations, that is, the sequence of values calculated from the expression
sc_time_stamp() + t, where t is the time argument to nb_transport, shall be non-decreasing. This applies
on the forward and backward paths alike.

f) There are no ordering constraints on the timing annotations of successive nb_transport calls through a
given socket for different transaction objects. For an approximately-timed simulation the timing
annotation order would typically be non-decreasing. However, in a case where blocking and non-
blocking transport calls were mixed, nb_transport calls for different transactions could appear out-of-
order.

g) Each initiator is generally recommended to call b_transport with non-decreasing timing annotations
(and is obliged to call nb_transport with non-decreasing timing annotations). Out-of-order timing
annotations should only arise where streams of transactions converge from two different loosely-timed
initiators.

h) For a given socket, an initiator is allowed to pass the same transaction object through the blocking and
non-blocking transport interfaces, the direct memory interface, and the transport debug interface, subject
to the memory management rules of the generic payload. See clause 6.5 Generic payload memory
management.

i) For a given socket, an initiator is permitted to switch between the blocking and non-blocking transport
interfaces for different transaction objects. Every target is obliged to support both the blocking and non-
blocking transport interfaces, and to maintain any internal state information such that it is accessible from
both interfaces. The intent is to permit an initiator to make occasional switches between a loosely-timed
and an approximately-timed simulation mode. An initiator that interleaves calls to b_transport and
nb_transport_fw should have low expectations with regard to timing accuracy.

j) The convenience socket simple_target_socket is provided in order that a base protocol target can
support both blocking and non-blocking transport interfaces while only being required to implement one
of b_transport and nb_transport_fw. See clause 5.3.2 Simple sockets.

k) For a given transaction object, an initiator shall not switch between the blocking and non-blocking
transport interfaces in the middle of the lifetime of a transaction. In other words, an initiator shall not call
nb_transport_fw before b_transport has returned, or call b_transport when there is an outstanding
BEGIN_REQ.

l) A given transaction object shall not be sent through multiple parallel sockets or along multiple parallel
paths simultaneously. Each transaction instance shall take a unique well-defined path through a set of
components and sockets which shall remain fixed for the lifetime of the transaction instance and is
common to the transport, direct memory and debug transport interfaces. Of course, different transactions
sent through a given socket may take different paths, that is, they may be routed differently.

m) For a write transaction (TLM_WRITE_COMMAND), a response status of TLM_OK_RESPONSE shall
indicate that the write command has completed at the target. The target is obliged to set the response
status with the transition to the BEGIN_RESP phase. In other words, an interconnect component is not
permitted to complete a write command transaction without having had confirmation of successful

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 115

completion from the target. The intent of this rule is to guarantee the coherency of the storage within the
target simulation model.

n) For a read transaction (TLM_READ_COMMAND), a response status of TLM_OK_RESPONSE shall
indicate that the read command has completed and the generic payload data array has been modified by
the target. The target is obliged to set the response status with the transition to the BEGIN_RESP phase.

7.2.6 Summary of obligations on base protocol components

This clause contains a summary of the most important obligations on components using the base protocol.
This is just a brief restatement of some of the rules presented more fully elsewhere in this document, and is
provided for convenience.

7.2.6.1 Obligations on an initiator

This is a summary of the obligations on an initiator when using the base protocol:

a) Use one initiator socket of class tlm_initiator_socket (or a derived class) for each connection to a
memory-mapped bus.

b) Use the default template type argument tlm_base_protocol_types to the tlm_initiator_socket.

c) Implement the methods nb_transport_bw and invalidate_direct_mem_ptr

d) Set every attribute of each generic payload transaction object before passing it as an argument to
b_transport or nb_transport_fw, always remembering in particular to reset the response status and
DMI hint attributes before the call.

e) If the transaction needs to be extended, only use the generic payload extension mechanism, and permit
any extensions to be ignorable by the target and any interconnect.

f) Honor any timing annotations passed as an arguments to b_transport, nb_transport_fw or
nb_transport_bw.

g) On completion of the transaction (or after receiving BEGIN_RESP), check the value of the response
status attribute.

7.2.6.2 Obligations on an initiator using nb_transport

a) Before passing a transaction as an argument to nb_transport_fw, set a memory manager for the
transaction object and call the acquire method of the transaction. Call the release method when the
transaction is complete.

b) When calling nb_transport_fw, set the phase argument to BEGIN_REQ or END_RESP according to
state of the transaction. Do not send BEGIN_REQ until receiving (or inferring) the END_REQ for the
previous transaction

c) When calling nb_transport_fw for a given transaction, ensure that when added to the current simulation
time the timing annotations form a non-decreasing sequence of values.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)116

d) In the implementation of the method nb_transport_bw, respond appropriately to the incoming phase
values END_REQ and BEGIN_RESP. Incoming phase values of BEGIN_REQ and END_RESP would
be illegal. Treat all other incoming phase values as being ignorable.

7.2.6.3 Obligations on a target

This is a summary of the obligations on a target when using the base protocol:

a) Use one target socket of class tlm_target_socket (or a derived class) for each connection to a memory-
mapped bus.

b) Use the default template type argument tlm_base_protocol_types to the tlm_target_socket.

c) Implement the methods b_transport, nb_transport_fw, get_direct_mem_ptr, and transport_dbg. (A
target can avoid the need to implement every method explicitly by using the convenience socket
simple_target_socket.)

d) In the implementations of the methods b_transport and nb_transport_fw, inspect and act upon the
value of every attribute of the generic payload with the exception of the response status, the DMI hint,
and any extensions. Rather than implementing the full functionality of the generic payload, a target may
choose to respond to a given attribute by generating an error response. Set the value of the response status
attribute to indicate the success or failure of the transaction.

e) Honor any timing annotations passed as arguments to b_transport, nb_transport_fw or
nb_transport_bw.

f) In the implementation of get_direct_mem_ptr, either return the value false, or inspect and act upon the
values of the command and address attributes of the generic payload and set all the attributes of the DMI
descriptor appropriately (class tlm_dmi).

g) In the implementation of transport_dbg, either return the value 0, or inspect and act upon the values of
the command, address, data length, and data pointer attributes of the generic payload.

h) For each interface, the target may inspect and act upon any ignorable extensions in the generic payload,
but is not obliged to do so.

7.2.6.4 Obligations on a target using nb_transport

a) When calling nb_transport_bw, set the phase argument to END_REQ or BEGIN_RESP according to
state of the transaction. Do not send BEGIN_RESP until receiving (or inferring) END_RESP for the
previous transaction.

b) When calling nb_transport_bw for a given transaction, ensure that when added to the current simulation
time, the timing annotations form a non-decreasing sequence of values.

c) In the implementation of the method nb_transport_fw, respond appropriately to the incoming phase
values BEGIN_REQ and END_RESP. Incoming phase values of END_REQ and BEGIN_RESP would
be illegal. Treat all other incoming phase values as being ignorable.

d) In the implementation of nb_transport_fw, when needing to keep a pointer or reference to a transaction
object beyond the return, call the acquire method of the transaction. Call the release method when the
transaction object is finished with.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 117

7.2.6.5 Obligations on an interconnect component

a) Use one initiator or target socket of class tlm_initiator_socket or tlm_target_socket (or derived classes)
for each connection to a memory-mapped bus.

b) Use the default template type argument tlm_base_protocol_types for each socket.

c) Implement the methods nb_transport_bw and invalidate_direct_mem_ptr for each initiator socket,
and the methods b_transport, nb_transport_fw, get_direct_mem_ptr, and transport_dbg for each
target socket. (The need to implement every method explicitly can be avoided by using the convenience
sockets.)

d) Pass on every incoming transaction object through the appropriate socket on both the forward and
backward paths. The only exceptions are the implementations of the get_direct_mem_ptr and
transport_dbg methods, which may return the values false and 0 respectively without forwarding the
transaction object.

e) In the implementation of the transport interfaces, the only generic payload attributes modifiable by an
interconnect component are the address, DMI hint, and extensions. Do not modify any other attributes. A
component needing to modify any other attributes should construct a new transaction object, and thereby
become an initiator in its own right.

f) In the implementation of the transport interfaces, honor the base protocol rules for phases and timing
annotation as described above for initiators and targets.

g) Decode the generic payload address attribute on the forward path and modify the address attribute if
necessary according to the location of the target in the system memory map. This applies to the transport,
direct memory and debug transport interfaces.

h) In the implementation of get_direct_mem_ptr, do not modify any DMI descriptor attributes on the
forward path. Do modify the DMI pointer, DMI start address and end address, and DMI access attributes
appropriately on the return path.

i) In the implementation of invalidate_direct_mem_ptr, modify the address range arguments before
passing the call along the backward path.

j) In the implementation of nb_transport_fw, when needing to keep a pointer or reference to a transaction
object beyond the return from the function, call the acquire method of the transaction. Call the release
method when the transaction object is finished with.

i) For each interface, the interconnect may inspect and act upon any ignorable extensions in the generic
payload, but is not obliged to do so. If the transaction needs to be extended further, only use the generic
payload extension mechanism, and permit any extensions to be ignorable by the target and any further
interconnect. Honor the generic payload memory management rules for extensions.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)118

8 Other classes

8.1 Global quantum and quantum keeper

8.1.1 Introduction

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount of time
known as the time quantum, and is associated with the loosely-timed coding style. Temporal decoupling
permits a significant simulation speed improvement by reducing the number of context switches and events.

When using temporal decoupling, the delays annotated to the b_transport and nb_transport methods are to
be interpreted as local time offsets defined relative to the start of the time quantum, which is always the
current simulation time as returned by sc_time_stamp(). The value of a global time quantum is maintained by
the singleton class tlm_global_quantum. It is recommended that each process should use the global time
quantum, but a process is permitted to calculate its own local time quantum.

The utility class tlm_quantumkeeper provides a set of methods for managing and interacting with the time
quantum. When using temporal decoupling, use of the quantum keeper is strongly recommended in order to
maintain a consistent coding style. However, it is straightforward in principle to implement temporal
decoupling directly in SystemC. Whether or not the utility class tlm_quantumkeeper is used, all temporally
decoupled models should reference the global quantum maintained by the class tlm_global_quantum.

Class tlm_global_quantum is in namespace tlm. Class tlm_quantumkeeper is in namespace tlm_utils.

For a general description of temporal decoupling, see clause 3.3.2 Loosely-timed coding style and temporal
decoupling

For a description of timing annotation, see clause 4.1.3 Timing annotation with the transport interfaces

8.1.2 Class definition

namespace tlm {

class tlm_global_quantum
{
public:
 static tlm_global_quantum& instance();
 virtual ~tlm_global_quantum();
 void set(const sc_core::sc_time&);
 const sc_core::sc_time& get() const;
 sc_core::sc_time compute_local_quantum();

protected:
 tlm_global_quantum();

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 119

};

} // namespace tlm

namespace tlm_utils {

class tlm_quantumkeeper
{
public:
 static void set_global_quantum(const sc_core::sc_time&);
 static const sc_core::sc_time& get_global_quantum();

 tlm_quantumkeeper();
 virtual ~tlm_quantumkeeper();

 virtual void inc(const sc_core::sc_time&);
 virtual void set(const sc_core::sc_time&);
 virtual sc_core::sc_time get_current_time() const;
 virtual sc_core::sc_time get_local_time();

 virtual bool need_sync() const;
 virtual void reset();
 virtual void sync();

protected:
 virtual sc_core::sc_time compute_local_quantum();
};

} // namespace tlm_utils

8.1.3 General rules for processes using temporal decoupling

a) For maximum simulation speed, all initiators should use temporal decoupling, and the number of other
runnable SystemC processes should be zero or minimized.

b) In an ideal scenario, the only runnable SystemC processes will belong to temporally decoupled initiators,
and each process will run ahead to the end of its time quantum before yielding to the SystemC kernel.

c) The time quantum should be chosen to be less than the typical communication interval between initiators,
otherwise important process interactions may be lost, and the model broken.

d) Yield means call wait in the case of a thread process, or return from the function in the case of a method
process.

e) Temporal decoupling runs in the context of the standard SystemC simulation kernel, so events can be
scheduled, processes suspended and resumed, and loosely-timed models can be mixed with other coding
styles.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)120

f) There is no obligation for every initiator to use temporal decoupling. Processes with and without
temporal decoupling can be mixed. However, any process that is not temporally decoupled is likely to
become a simulation speed bottleneck.

g) Each temporally decoupled initiator should accumulate any local processing delays and communication
delays in a local variable, referred to in this clause as the local time offset. It is strongly recommended
that the quantum keeper should be used to maintain the local time offset..

h) Calls to the sc_time_stamp method will return the simulation time as it was at the start of the current
time quantum.

i) The local time offset is unknown to the SystemC scheduler. When using the transport interfaces, the local
time offset should be passed as an argument to the b_transport or nb_transport methods.

j) Use of the nb_transport method with temporal decoupling and the quantum keeper is not ruled out, but is
not usually advantageous because the speed advantage to be gained from temporal decoupling would be
nullified by the high degree of inter-process communication inherent in the approximately-timed coding
style.

k) Any access to a variable or object will give the value it had at the start of the current time quantum,
unless it has been modified by this or another temporally decoupled process. In particular, any sc_signal
accessed from a temporally decoupled process will have the same value it had at the start of the current
time quantum.

8.1.4 Class tlm_global_quantum

a) There is a unique global quantum maintained by the class tlm_global_quantum. This should be
considered the default time quantum. The intent is that all temporally decoupled initiators should
synchronize on integer multiples of the global quantum, or more frequently where required.

b) It is possible for each initiator to use a different time quantum, but more typical for all initiators to use the
global quantum. An initiator that only requires infrequent synchronization could conceivably have a
longer time quantum than the rest, but it is usually the shortest time quantum that has the biggest negative
impact on simulation speed.

c) The method instance shall return a reference to the singleton global quantum object.

d) The method set shall set the value of the global quantum to the value passed as an argument.

e) The method get shall return the value of the global quantum.

f) The method compute_local_quantum shall calculate and return the value of the local quantum based on
the unique global quantum. The local quantum shall be calculated by subtracting the value of
sc_time_stamp from the next largest integer multiple of the global quantum. The local quantum will
equal the global quantum in the case where compute_local_quantum is called at a simulation time that
is an integer multiple of the global quantum. Otherwise, the local quantum will be less that the global
quantum.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 121

8.1.5 Class tlm_quantumkeeper

a) The constructor shall set the local time offset to SC_TIME_ZERO but shall not call the virtual method
compute_local_quantum. Because the constructor does not calculate the local quantum, an application
should call the method reset immediately after constructing a quantum keeper object.

b) The implementation of class tlm_quantum_keeper shall not create a static object of class sc_time, but
the constructor may create objects of class sc_time. This implies that an application may call function
sc_core::sc_set_time_resolution before, and only before, constructing the first quantum keeper object.

c) The method set_global_quantum shall set the value of the global quantum to the value passed as an
argument, but shall not modify the local quantum. The method get_global_quantum shall return the
current value of the global quantum. After calling set_global_quantum it is recommended to call the
method reset to recalculate the local quantum.

d) The method get_local_time shall return the current value of the local time offset.

e) The method get_current_time shall return the current value of the effective local time, that is,
sc_time_stamp() + local_time_offset

f) The method inc shall add the value passed as an argument to the local time offset.

g) The method set shall set the value of the local time offset to the value passed as an argument.

h) The method need_sync shall return the value true if and only if the local time offset is greater than the
local quantum.

i) The method sync shall call wait(local_time_offset) to suspend the process until simulation time equals
the effective local time, and shall then call method reset..

j) The method reset shall call the method compute_local_quantum and shall set the local time offset back
to SC_ZERO_TIME.

k) The method compute_local_quantum of class tlm_quantumkeeper shall call the method
compute_local_quantum of class tlm_global_quantum, but may be overridden.

l) The class tlm_quantumkeeper should be considered the default implementation for the quantum keeper.
Applications may derive their own quantum keeper from class tlm_quantumkeeper and override the
method compute_local_quantum, but this is unusual.

m) When the local time offset is greater than or equal to the local quantum, the process should yield to the
kernel. It is strongly recommended that the process does this by calling the sync method.

n) There is no mechanism to enforce synchronization at the end of the time quantum. It is the responsibility
of the initiator to check need_sync and call sync as needed.

o) The b_transport method may itself yield such that the value of sc_time_stamp can be different before
and after the call. The value of the local time offset and any timing annotations are always expressed
relative to the current value of sc_time_stamp. On return from b_transport or nb_transport_fw, it is
the responsibility of the initiator to set the local time offset of the quantum keeper by calling the set
method, then check for synchronization by calling the need_sync method.

p) If an initiator needs to synchronize before the end of the time quantum, that is, if an initiator needs to
suspend execution so that simulation time can catch up with the local time, it may do so by calling the

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)122

sync method or by explicitly waiting on an event. This gives any other processes the chance to execute,
and is known as synchronization-on-demand.

q) Making frequent calls to sync will reduce the effectiveness of temporal decoupling.

Example

struct Initiator: sc_module // Loosely-timed initiator
{

tlm_utils::simple_initiator_socket<Initiator> init_socket;

tlm_utils::tlm_quantumkeeper m_qk; // The quantum keeper

SC_CTOR(Initiator) : init_socket("init_socket") {
SC_THREAD(thread); // The initiator process
...
m_qk.set_global_quantum(sc_time(1, SC_US)); // Replace the global quantum
m_qk.reset(); // Re-calculate the local quantum

}

void thread() {
tlm::tlm_generic_payload trans;
sc_time delay;
trans.set_command(tlm::TLM_WRITE_COMMAND);
trans.set_data_length(4);

for (int i = 0; i < RUN_LENGTH; i += 4) {
int word = i;
trans.set_address(i);
trans.set_data_ptr((unsigned char*)(&word));

delay = m_qk.get_local_time(); // Annotate b_transport with local time
init_socket->b_transport(trans, delay);
qk.set(delay); // Update qk with time consumed by target

m_qk.inc(sc_time(100, SC_NS)); // Further time consumed by initiator
if (m_qk.need_sync()) m_qk.sync(); // Check local time against quantum

}
}
...

};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 123

8.2 Payload event queue

8.2.1 Introduction

A payload event queue (PEQ) is a class that maintains a queue of SystemC event notifications, where each
notification carries an associated transaction object. Each transaction is written into the PEQ annotated with a
delay, and each transaction emerges from the back of the PEQ at a time calculated from the current simulation
time plus the annotated delay.

Two payload event queues are provided as utilities. As well as being useful in their own right, the PEQ is of
conceptual relevance in understanding the semantics of timing annotation with the approximately-timed
coding style. However, it is possible to implement approximately-timed models without using the specific
payload event queues given here. In an approximately-timed model, it is often appropriate for the recipient of
a transaction passed using nb_transport to put the transaction into a PEQ with the annotated delay. The PEQ
will schedule the timing point associated with the nb_transport call to occur at the correct simulation time.

Transactions are inserted into a PEQ by calling the notify method of the PEQ, passing a delay as an argument.
There is also a notify method that takes no arguments and schedules an immediate notification. The delay is
added to the current simulation time (sc_time_stamp) to calculate the time at which the transaction will
emerge from the back end of the PEQ. The scheduling of the events is managed internally using a SystemC
timed event notification, exploiting the property of class sc_event that if the notify method is called whilst
there is a notification pending, the notification with the earliest simulation time will remain while the other
notification gets cancelled.

Transactions emerge in different ways from the two PEQ variants. In the case of peq_with_get, the method
get_event returns an event that is notified whenever a transaction is ready to be retrieved. The method
get_next_transaction should be called repeatedly to retrieve any available transactions one at a time. If a
transaction is not retrieved from the PEQ in the evaluation phase in which the corresponding notification
occurs, it will still be available for retrieval on a subsequent call to get_next_transaction at a later time. If
there are no more transactions to be retrieved, get_next_transaction returns a null pointer.

In the case of peq_with_cb_and_phase, a callback method is registered as a constructor argument, and that
method is called as each transaction emerges. This particular PEQ carries both a transaction object and a
phase object with each notification, and both are passed as arguments to the callback method.

Transactions emerge at scheduled times as calculated using the simulation time and the delay argument, not in
the order in which they were inserted. If several transactions are scheduled to emerge at the same time, they
will all emerge in a single delta cycle in the order in which they were inserted. Transactions cannot be lost or
cancelled.

For an example, see clause 7.1 Phases

8.2.2 Class definition

namespace tlm_utils {

template <class PAYLOAD>
class peq_with_get : public sc_core::sc_object

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)124

{
public:

typedef PAYLOAD transaction_type;

peq_with_get(const char* name);

void notify(transaction_type& trans, sc_core::sc_time& t);
void notify(transaction_type& trans);

transaction_type* get_next_transaction();
sc_core::sc_event& get_event();

};

template<typename OWNER, typename TYPES=tlm::tlm_base_protocol_types>
class peq_with_cb_and_phase : public sc_core::sc_object
{
public:

typedef typename TYPES::tlm_payload_type tlm_payload_type;
typedef typename TYPES::tlm_phase_type tlm_phase_type;
typedef void (OWNER::*cb)(tlm_payload_type&, const tlm_phase_type&);

peq_with_cb_and_phase(OWNER* , cb);
peq_with_cb_and_phase(const char* , OWNER* , cb);
~peq_with_cb_and_phase();

void notify (tlm_payload_type& , tlm_phase_type& , const sc_core::sc_time&);
void notify (tlm_payload_type& , tlm_phase_type&);

};

} // namespace tlm_utils

8.3 Analysis interface and analysis ports

Analysis ports are intended to support the distribution of transactions to multiple components for analysis,
meaning tasks such as checking for functional correctness or collecting functional coverage statistics. The key
feature of analysis ports is that a single port can be bound to multiple channels or subscribers such that the
port itself replicates each call to the interface method write with each subscriber. An analysis port can be
bound to zero or more subscribers or other analysis ports, and can be unbound.

Each subscriber implements the write method of the tlm_analysis_if. The method is passed a const reference
to a transaction, which a subscriber may process immediately. Otherwise, if the subscriber wishes to extend
the lifetime of the transaction, it is obliged to take a deep copy of the transaction object, at which point the
subscriber effectively becomes the initiator of a new transaction and is thus responsible for the memory
management of the copy.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 125

Analysis ports should not be used in the main operational pathways of a model, but only where data is tapped
off and passed to the side for analysis. Interface tlm_analysis_if is derived from tlm_write_if. The latter
interface is not specific to analysis, and may be used for other purposes. For example, see clause 8.2 Payload
event queue.

The TLM-2 kit includes the tlm_analysis_fifo, which is simply an infinite tlm_fifo that implements the
tlm_analysis_if to write a transaction to the fifo. The tlm_fifo also supports the tlm_analysis_triple, which
consists of a transaction together with explicit start and end times.

8.3.1 Class definition

namespace tlm {

// Write interface
template <typename T>
class tlm_write_if : public virtual sc_core::sc_interface {
public:
 virtual void write(const T&) = 0;
};

template <typename T>
class tlm_delayed_write_if : public virtual sc_core::sc_interface {
public:
 virtual void write(const T& , const sc_core::sc_time&) = 0;
};

// Analysis interface
template < typename T >
class tlm_analysis_if : public virtual tlm_write_if<T>
{
};

template < typename T >
class tlm_delayed_analysis_if : public virtual tlm_delayed_write_if<T>
{
};

// Analysis port
template < typename T>
class tlm_analysis_port : public sc_core::sc_object , public virtual tlm_analysis_if< T >
{
public:
 tlm_analysis_port();
 tlm_analysis_port(const char *);

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)126

 // bind and () work for both interfaces and analysis ports, since analysis ports implement the analysis
interface
 void bind(tlm_analysis_if<T> &);
 void operator() (tlm_analysis_if<T> &);
 bool unbind(tlm_analysis_if<T> &);

 void write(const T &);
};

// Analysis triple
template< typename T>
struct tlm_analysis_triple {

 sc_core::sc_time start_time;
 T transaction;
 sc_core::sc_time end_time;

 // Constructors
 tlm_analysis_triple();
 tlm_analysis_triple(const tlm_analysis_triple &triple);
 tlm_analysis_triple(const T &t);

 operator T() { return transaction; }
 operator const T& () const { return transaction; }
};

// Analysis fifo - an unbounded tlm_fifo
template< typename T >
class tlm_analysis_fifo :
 public tlm_fifo< T > ,
 public virtual tlm_analysis_if< T > ,
 public virtual tlm_analysis_if< tlm_analysis_triple< T > > {

public:
 tlm_analysis_fifo(const char *nm) : tlm_fifo<T>(nm, -16) {}
 tlm_analysis_fifo() : tlm_fifo<T>(-16) {}

 void write(const tlm_analysis_triple<T> &t) { nb_put(t); }
 void write(const T &t) { nb_put(t); }
};

} // namespace tlm

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 127

8.3.2 Rules

a) tlm_write_if and tlm_analysis_if (and their delayed variants) are unidirectional, non-negotiated, non-
blocking transaction-level interfaces, meaning that the callee has no choice but to immediately accept the
transaction passed as an argument.

b) The constructor shall pass any character string argument to the constructor belonging to the base class
sc_object to set the string name of the instance in the module hierarchy.

c) The bind method shall register the subscriber passed as an argument with the analysis port instance so
that any call to the write method shall be passed on to the registered subscriber. Multiple subscribers may
be registered with a single analysis port instance.

d) The operator() shall be equivalent to the bind method.

e) There may be zero subscribers registered with any given analysis port instance, in which case calls to the
write method shall not be propagated.

f) The unbind method shall reverse the effect of the bind method, that is, the subscriber passed as an
argument shall be removed from the list of subscribers to that analysis port instance.

g) The write method of class tlm_analysis_port shall call the write method of every subscriber registered
with that analysis port instance, passing on the argument as a const reference.

h) The write method is non-blocking. It shall not call wait.

i) The write method shall not modify the transaction object passed as a const reference argument, nor shall
it modify any data associated with the transaction object (such as the data and byte enable arrays of the
generic payload).

j) If the implementation of the write method in a subscriber is unable to process the transaction before
returning control to the caller, the subscriber shall be responsible for taking a deep copy of the transaction
object and for managing any memory associated with that copy thereafter.

k) The constructors of class tlm_analysis_fifo shall each construct an unbounded tlm_fifo.

l) The write methods of class tlm_analysis_fifo shall call the nb_put method of the base class tlm_fifo,
passing on their argument to nb_put.

Example

struct Trans // Analysis transaction class
{
 int i;
};

struct Subscriber: sc_object, tlm::tlm_analysis_if<Trans>
{
 Subscriber(const char* n) : sc_object(n) {}

 virtual void write(const Trans& t)

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)128

 {
 cout << "Hello, got " << t.i << "\n"; // Implementation of the write method
 }
};

SC_MODULE(Child)
{
 tlm::tlm_analysis_port<Trans> ap;

 SC_CTOR(Child) : ap("ap")
 {
 SC_THREAD(thread);
 }
 void thread()
 {
 Trans t = {999};
 ap.write(t); // Interface method call to the write method of the analysis port
 }
};

SC_MODULE(Parent)
{
 tlm::tlm_analysis_port<Trans> ap;

 Child* child;

 SC_CTOR(Parent) : ap("ap")
 {
 child = new Child("child");
 child->ap.bind(ap); // Bind analysis port of child to analysis port of parent
 }
};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 129

SC_MODULE(Top)
{
 Parent* parent;
 Subscriber* subscriber1;
 Subscriber* subscriber2;

 SC_CTOR(Top)
 {
 parent = new Parent("parent");
 subscriber1 = new Subscriber("subscriber1");
 subscriber2 = new Subscriber("subscriber2");

 parent->ap.bind(*subscriber1); // Bind analysis port to two separate subscribers
 parent->ap.bind(*subscriber2); // This is the key feature of analysis ports
 }
};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)130

9 TLM-1 legacy
The following core interfaces and tlm_fifo channel from TLM-1.0 are still part of the TLM-2.0 standard, but
are not documented in detail here.

9.1 TLM-1.0 core interfaces

The transport method with the signature transport(const REQ& , RSP&) was not part of TLM-1.0, but has
been added in TLM-2.0.

namespace tlm {

// Bidirectional blocking interfaces
template < typename REQ , typename RSP >
class tlm_transport_if : public virtual sc_core::sc_interface
{
public:
 virtual RSP transport(const REQ&) = 0;
 virtual void transport(const REQ& req , RSP& rsp) { rsp = transport(req); }
};

// Uni-directional blocking interfaces
template < typename T >
class tlm_blocking_get_if : public virtual sc_core::sc_interface
{
public:
 virtual T get(tlm_tag<T> *t = 0) = 0;
 virtual void get(T &t) { t = get(); }
};

template < typename T >
class tlm_blocking_put_if : public virtual sc_core::sc_interface
{
public:
 virtual void put(const T &t) = 0;
};

// Uni-directional non blocking interfaces
template < typename T >
class tlm_nonblocking_get_if : public virtual sc_core::sc_interface
{
public:
 virtual bool nb_get(T &t) = 0;
 virtual bool nb_can_get(tlm_tag<T> *t = 0) const = 0;
 virtual const sc_core::sc_event &ok_to_get(tlm_tag<T> *t = 0) const = 0;

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 131

};

template < typename T >
class tlm_nonblocking_put_if : public virtual sc_core::sc_interface
{
public:
 virtual bool nb_put(const T &t) = 0;
 virtual bool nb_can_put(tlm_tag<T> *t = 0) const = 0;
 virtual const sc_core::sc_event &ok_to_put(tlm_tag<T> *t = 0) const = 0;
};

// Combined uni-directional blocking and non blocking
template < typename T >
class tlm_get_if :
 public virtual tlm_blocking_get_if< T > ,
 public virtual tlm_nonblocking_get_if< T > {};

template < typename T >
class tlm_put_if :
 public virtual tlm_blocking_put_if< T > ,
 public virtual tlm_nonblocking_put_if< T > {};

// Peek interfaces
template < typename T >
class tlm_blocking_peek_if : public virtual sc_core::sc_interface
{
public:
 virtual T peek(tlm_tag<T> *t = 0) const = 0;
 virtual void peek(T &t) const { t = peek(); }
};

template < typename T >
class tlm_nonblocking_peek_if : public virtual sc_core::sc_interface
{
public:
 virtual bool nb_peek(T &t) const = 0;
 virtual bool nb_can_peek(tlm_tag<T> *t = 0) const = 0;
 virtual const sc_core::sc_event &ok_to_peek(tlm_tag<T> *t = 0) const = 0;
};

template < typename T >
class tlm_peek_if :
 public virtual tlm_blocking_peek_if< T > ,
 public virtual tlm_nonblocking_peek_if< T > {};

// Get_peek interfaces

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)132

template < typename T >
class tlm_blocking_get_peek_if :
 public virtual tlm_blocking_get_if<T> ,
 public virtual tlm_blocking_peek_if<T> {};

template < typename T >
class tlm_nonblocking_get_peek_if :
 public virtual tlm_nonblocking_get_if<T> ,
 public virtual tlm_nonblocking_peek_if<T> {};

template < typename T >
class tlm_get_peek_if :
 public virtual tlm_get_if<T> ,
 public virtual tlm_peek_if<T> ,
 public virtual tlm_blocking_get_peek_if<T> ,
 public virtual tlm_nonblocking_get_peek_if<T>
 {};

} // namespace tlm

9.2 TLM-1.0 fifo interfaces

namespace tlm {

// Fifo debug interface
template< typename T >
class tlm_fifo_debug_if : public virtual sc_core::sc_interface
{
public:
 virtual int used() const = 0;
 virtual int size() const = 0;
 virtual void debug() const = 0;

 // non blocking peek and poke - no notification. n is index of data :
 // 0 <= n < size(), where 0 is most recently written, and size() – 1 is oldest ie the one about to be read.
 virtual bool nb_peek(T & , int n) const = 0;
 virtual bool nb_poke(const T & , int n = 0) = 0;
};

// Fifo interfaces
template < typename T >
class tlm_fifo_put_if :
 public virtual tlm_put_if<T> ,
 public virtual tlm_fifo_debug_if<T> {};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 133

template < typename T >
class tlm_fifo_get_if :
 public virtual tlm_get_peek_if<T> ,
 public virtual tlm_fifo_debug_if<T> {};

} // namespace tlm

9.3 tlm_fifo

namespace tlm {

template <typename T>
class tlm_fifo :
 public virtual tlm_fifo_get_if<T>,
 public virtual tlm_fifo_put_if<T>,
 public sc_core::sc_prim_channel
{
public:
 explicit tlm_fifo(int size_ = 1);
 explicit tlm_fifo(const char* name_, int size_ = 1);
 virtual ~tlm_fifo();

 T get(tlm_tag<T> *t = 0);
 bool nb_get(T&);
 bool nb_can_get(tlm_tag<T> *t = 0) const;
 const sc_core::sc_event &ok_to_get(tlm_tag<T> *t = 0) const;

 T peek(tlm_tag<T> *t = 0) const;
 bool nb_peek(T&) const;
 bool nb_can_peek(tlm_tag<T> *t = 0) const;
 const sc_core::sc_event &ok_to_peek(tlm_tag<T> *t = 0) const;

 void put(const T&);
 bool nb_put(const T&);
 bool nb_can_put(tlm_tag<T> *t = 0) const;
 const sc_core::sc_event& ok_to_put(tlm_tag<T> *t = 0) const;

 void nb_expand(unsigned int n = 1);
 void nb_unbound(unsigned int n = 16);
 bool nb_reduce(unsigned int n = 1);
 bool nb_bound(unsigned int n);

 bool nb_peek(T & , int n) const;

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)134

 bool nb_poke(const T & , int n = 0);

 int used() const;
 int size() const;
 void debug() const;

 static const char* const kind_string;
 const char* kind() const;
};

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 135

10 Glossary

Blue = taken from the SystemC LRM

This glossary contains brief, informal descriptions for a number of terms and phrases used in this standard.
Where appropriate, the complete, formal definition of each term or phrase is given in the main body of the
standard. Each glossary entry contains either the clause number of the definition in the main body of the
standard or an indication that the term is defined in ISO/IEC 14882:2003 or IEEE Std 1666-2005.

adapter: A module that connects a transaction level interface to a pin level interface (in the general sense of
the word interface) or that connects together two transaction level interfaces, often at different abstraction
levels. Typically, an adapter is used to convert between two transaction-level interfaces of different types. See
transactor.

approximately timed: A modeling style for which there exists a one-to-one mapping between the externally
observable states of the model and the states of some corresponding detailed reference model such that the
mapping preserves the sequence of state transitions but not their precise timing. The degree of timing
accuracy is undefined. See cycle approximate.

attribute (of a transaction): Data that is part of and carried with the transaction and is implemented as a
member of the transaction object. These may include attributes inherent in the bus or protocol being modeled,
and attributes that are artefacts of the simulation model (a timestamp, for example).

automatic deletion: A generic payload extension marked for automatic deletion will be deleted at the end of
the transaction lifetime, that is, when the transaction reference count reaches 0.

backward path: The calling path by which a target or interconnect component makes interface method calls
back in the direction of another interconnect component or the initiator.

base protocol: A protocol types class consisting of the generic payload and tlm_phase types, together with an
associated set of protocol rules which together ensure maximal interoperability between transaction-level
models

bidirectional interface: A TLM 1.0 transaction level interface in which a pair of transaction objects, the
request and the response, are passed in opposite directions, each being passed according to the rules of the
unidirectional interface. For each transaction object, the transaction attributes are strictly readonly in the
period between the first timing point and the end of the transaction lifetime.

blocking: Permitted to call the wait method. A blocking function may consume simulation time or perform a
context switch, and therefore shall not be called from a method process. A blocking interface defines only
blocking functions.

blocking transport interface: A blocking interface of the TLM-2 standard which contains a single method
b_transport. Beware that there still exists a blocking transport method named transport, part of TLM-1.0.

bridge: A module that connects together two similar or dissimilar transaction-level interfaces, each
representing a memory-mapped bus or other protocol, usually at the same abstraction level. A bus bridge is a
device that connects two similar or dissimilar buses together. A communication bridge is a device that
connects network segments on the data link layer of a network. In TLM-2, a bridge is a component that acts
as a target for an incoming transaction and an initiator for an outgoing transaction. See transactor.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)136

caller: In a function call, the sequence of statements from which the given function is called. The referent of
the term may be a function, a process, or a module. This term is used in preference to initiator to refer to the
caller of a function as opposed to the initiator of a transaction.

callee: In a function call, the function that is called by the caller. This term is used in preference to target to
refer to the function body as opposed to the target of a transaction.

channel: A class that implements one or more interfaces or an instance of such a class. A channel may be a
hierarchical channel or a primitive channel or, if neither of these, it is strongly recommended that a channel at
least be derived from class sc_object. Channels serve to encapsulate the definition of a communication
mechanism or protocol. (SystemC term)

child: An instance that is within a given module. Module A is a child of module B if module A is within
module B. (SystemC Term)

combined interfaces: Pre-defined groups of core interfaces used to parameterize the socket classes. There are
four combined interfaces: the blocking and non-blocking forward and backward interfaces.

convenience socket: A socket class, derived from tlm_initiator_socket or tlm_target_socket, that
implements some additional functionality and is provided for convenience. Several convenience sockets are
provided as utilities.

core interface: One of the specific transaction level interfaces defined in this standard, including the blocking
and non-blocking transport interface, the direct memory interface, and the debug transport interface. Each
core interface is an interface proper. The core interfaces are distinct from the generic payload API.

cycle accurate: A modeling style in which it is possible to predict the state of the model in any given cycle at
the external boundary of the model and thus to establish a one-to-one correspondence between the states of
the model and the externally observable states of a corresponding RTL model in each cycle, but which is not
required to explicitly re-evaluate the state of the entire model in every cycle or to explicitly represent the state
of every boundary pin or internal register. This term is only applicable to models that have a notion of cycles.

cycle approximate: A model for which there exists a one-to-one mapping between the externally observable
states of the model and the states of some corresponding cycle accurate model such that the mapping
preserves the sequence of state transitions but not their precise timing. The degree of timing accuracy is
undefined. This term is only applicable to models that have a notion of cycles.

cycle count accurate, cycle count accurate at transaction boundaries: A modeling style in which it is
possible to establish a one-to-one correspondence between the states of the model and the externally
observable states of a corresponding RTL model as sampled at the timing points marking the boundaries of a
transaction. A cycle count accurate model is not required to be cycle accurate in every cycle, but is required to
accurately predict both the functional state and the number of cycles at certain key timing points as defined by
the boundaries of the transactions through which the model communicates with other models.

declaration: A C++ language construct that introduces a name into a C++ program and specifies how the
C++ compiler is to interpret that name. Not all declarations are definitions. For example, a class declaration
specifies the name of the class but not the class members, while a function declaration specifies the function
parameters but not the function body. (See definition.) (C++ term)

definition: The complete specification of a variable, function, type, or template. For example, a class
definition specifies the class name and the class members, and a function definition specifies the function
parameters and the function body. (See declaration.) (C++ term)

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 137

extension: A user-defined object added to and carried around with a generic payload transaction object, or a
user-defined class that extends the set of values that are assignment compatible with the tlm_phase type. An
ignorable extension may be used with the base protocol, but a mandatory extension requires the definition of a
new protocol types class.

forward path: The calling path by which an initiator or interconnect component makes interface method calls
forward in the direction of another interconnect component or the target.

generic payload: A specific set of transaction attributes and their semantics together defining a transaction
level payload which may be used to achieve a degree of interoperability between untimed, loosely timed and
approximately timed models for components communicating over a memory-mapped bus. The same
transaction class is used for all modeling styles.

global quantum: The default time quantum used by every quantum keeper and temporally decoupled
initiator. The intent is that all temporally decoupled initiators should typically synchronize on integer
multiples of the global quantum, or more frequently on demand.

initiator: A module that can initiate transactions. The initiator is responsible for initializing the state of the
transaction object, and for deleting or reusing the transaction object at the end of the transaction’s lifetime. An
initiator is usually a master and a master is usually an initiator, but the term initiator means that a component
can initiate transactions, whereas the term master means that a component can take control of a bus. In the
case of the TLM 1.0 interfaces, the term initiator as defined here may not be strictly applicable, so the terms
caller and callee may be used instead for clarity.

initiator socket: A class containing a port for interface method calls on the forward path and an export for
interface method calls on the backward path. A socket also overloads the SystemC binding operators to bind
both port and export.

interconnect component: A module that accesses a transaction object, but does act as an initiator or a target
with respect to that transaction. An interconnect component may or may not be permitted to modify the
attributes of the transaction object, depending on the rules of the payload. An arbiter or a router would
typically be modeled as an interconnect component, the alternative being to model it as a target for one
transaction and an initiator for a separate transaction.

interface: A class derived from class sc_interface. An interface proper is an interface, and in the object-
oriented sense a channel is also an interface. However, a channel is not an interface proper. (SystemC term)

Interface Method Call (IMC): A call to an interface method. An interface method is a member function
declared within an interface. The IMC paradigm provides a level of indirection between a method call and the
implementation of the method within a channel such that one channel can be substituted with another without
affecting the caller. (SystemC term)

interface proper: An abstract class derived from class sc_interface but not derived from class sc_object. An
interface proper declares the set of methods to be implemented within a channel and to be called through a
port. An interface proper contains pure virtual function declarations, but typically contains no function
definitions and no data members. (SystemC term)

interoperability: The ability of two or more transaction level models from diverse sources to exchange
information using the interfaces defined in this standard. The intent is that models that implement common
memory-mapped bus protocols in the programmers view use case should be interoperable without the need
for explicit adapters. Furthermore, the intent is to reduce the amount of engineering effort needed to achieve

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)138

interoperability for models of divergent protocols or use cases, although it is expected that adapters will be
required in general.

lifetime (of an object): The lifetime of an object starts when storage is allocated and the constructor call has
completed, if any. The lifetime of an object ends when storage is released or immediately before the
destructor is called, if any. (C++ term)

lifetime (of a transaction): The period of time that starts when the transaction becomes valid and ends when
the transaction becomes invalid. Because it is possible to pool or re-use transaction objects, the lifetime of a
transaction object may be longer than the lifetime of the corresponding transaction. For example, a transaction
object could be a stack variable passed as an argument to multiple put calls of the TLM-1 interface.

local quantum: The amount of simulation time remaining before the initiator is required to synchronize.
Typically, the local quantum equals the current simulation time subtracted from the next largest integer
multiple of the global quantum, but this calculation can be overridden for a given quantum keeper.

loosely timed: A modeling style that represents minimal timing information sufficient only to support
features necessary to boot an operating system and to manage multiple threads in the absence of explicit
synchronization between those threads. A loosely timed model may include timer models and a notional
arbitration interval or execution slot length. Some users adopt the practice of inserting random delays into
loosely timed descriptions in order to test the robustness of their protocols, but this practice does not change
the basic characteristics of the modeling style.

master: This term has no precise technical definition in this standard, but is used to mean a module or port
that can take control of a memory-mapped bus in order to initiate bus traffic, or a component that can execute
an autonomous software thread and thus initiate other system activity. Generally, a bus master would be an
initiator.

memory manager: A user-defined class that performs memory management for a generic payload
transaction object. A memory manager must provide a free method, called when the reference count of the
transaction reaches 0.

method: A function that implements the behavior of a class. This term is synonymous with the C++ term
member function. In SystemC, the term method is used in the context of an interface method call. Throughout
this standard, the term member function is used when defining C++ classes (for conformance to the C++
standard), and the term method is used in more informal contexts and when discussing interface method calls.
(SystemC term)

multi-socket: One of a family of convenience sockets that can be bound to multiple sockets belonging to
other components. A multi-initiator socket can be bound to more than one target socket, and more than one
initiator socket can be bound to a single multi-target socket. When calling interface methods through multi-
sockets, the destinations are distinguished using the subscript operator.

nb_transport: The nb_transport_fw and nb_transport_bw methods. In this document, the italicised term
nb_transport is used to describe both methods in situations where there is no need to distinguish between
them.

non-blocking: Not permitted to call the wait method. A non-blocking function is guaranteed to return
without consuming simulation time or performing a context switch, and therefore may be called from a thread
process or from a method process. A non-blocking interface defines only non-blocking functions.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 139

non-blocking transport interface: A non-blocking interface of the TLM-2 standard. There a two such
interfaces, containing methods named nb_transport_fw and nb_transport_bw.

object: A region of storage. Every object has a type and a lifetime. An object created by a definition has a
name, whereas an object created by a new expression is anonymous. (C++ term)

parent: The inverse relationship to child. Module A is the parent of module B if module B is a child of
module A. (SystemC term)

payload event queue (PEQ): A class that maintains a queue of SystemC event notifications, where each
notification carries an associated transaction object. Transactions are put into the queue annotated with a
delay, and each transaction pops out of the back of queue at the time it was put in plus the given delay. Useful
when combining the non-blocking interface with the approximately-timed coding style.

phase: The period in the lifetime of a transaction occurring between successive timing points. The phase is
passed as an argument to the non-blocking transport method.

programmers view (PV): The use case of the software programmer who requires a functionally accurate,
loosely timed model of the hardware platform for booting an operating system and running application
software.

protocol types class: A class containing a typedef for the type of the transaction object and the phase type,
which is used to parameterize the combined interfaces, and effectively defines a unique type for a protocol.

quantum: In temporal decoupling, the amount a process is permitted to run ahead of the current simulation
time.

quantum keeper: A utility class used to store the local time offset from the current simulation time, which it
checks against a local quantum.

return path: The control path by which the call stack of a set of interface method calls is unwound along
either the forward path or the backward path. The return path for the forward path can carry information from
target to initiator, and the return path for the backward path can carry information from initiator to target.

simple socket: One of a family of convenience sockets that are simple to use because they allows callback
methods to be registered directly with the socket object rather than the socket having to be bound to another
object that implements the required interfaces. The simple target socket avoids the need for a target to
implement both blocking and non-blocking transport interfaces by providing automatic conversion between
the two.

slave: This term has no precise technical definition in this standard, but is used to mean a reactive module or
port on a memory-mapped bus that is able to respond to commands from bus masters, but is not able itself to
initiate bus traffic. Generally, a slave would be modeled as a target.

socket: See initiator socket and target socket

standard error response: The behavior prescribed by this standard for a generic payload target that is unable
to execute a transaction successfully. A target should either a) execute the transaction successfully or b) set
the response status attribute to an error response or c) call the SystemC report handler.

sticky extension: A generic payload extension object that will not be automatically deleted when the
reference count of the transaction object reaches 0. Sticky extensions are not deleted by the memory manager.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI)140

synchronize: To yield such that other processes may run, or when using temporal decoupling, to yield and
wait until the end of the current time quantum.

synchronization-on-demand: An indication from the nb_transport method back to its caller that it was
unwilling or unable to fulfil a request to effectively execute a transaction at a future time (temporal
decoupling), and therefore that the caller must yield control back to the SystemC scheduler so that simulation
time may advance and other processes run.

tagged socket: One of a family of convenience sockets that add an int id tag to every incoming interface
method call in order to identify the socket (or element of a multi-socket) through which the transaction
arrived.

target: A module that represents the final destination of a transaction, able to respond to transactions
generated by an initiator, but not itself able to initiate new transactions. For a write operation, data is copied
from the initiator to one or more targets. For a read operation, data is copied from one target to the initiator. A
target may read or modify the state of the transaction object. In the case of the TLM 1.0 interfaces, the term
target as defined here may not be strictly applicable, so the terms caller and callee may be used instead for
clarity.

target socket: A class containing a port for interface method calls on the backward path and an export for
interface method calls on the forward path. A socket also overloads the SystemC binding operators to bind
both port and export.

temporal decoupling: The ability to allow one or more initiators to run ahead of the current simulation time
in order to reduce context switching and thus increase simulation speed.

timing point: A point in time at which the processes that are interacting through a transaction either transfer
control or are synchronized. Certain timing points are implemented as function calls or returns, others as
event notifications. Timing points mark the boundaries between the phases of a transaction. Consecutive
timing points could occur in different delta cycles at the same simulation time.

TLM-1: The first major version of the OSCI Transaction Level Modeling standard. TLM-1.0 was released in
2005.

TLM-2: The second major version of the OSCI Transaction Level Modeling standard. This document
describes TLM-2.0.

transaction: An abstraction for an interaction or communication between two or more concurrent processes.
A transaction carries a set of attributes and is bounded in time, meaning that the attributes are only valid
within a specific time window. The timing associated with the transaction is limited to a specific set of timing
points, depending on the type of the transaction. Processes may be permitted to read or modify attributes of
the transaction, depending on the protocol.

transaction object: The object that stores the attributes associated with a transaction. The type of the
transaction object is passed as a template argument to the core interfaces.

transaction level (TL): The abstraction level at which communication between concurrent processes is
abstracted away from pin wiggling to transactions. This term does not imply any particular level of
granularity with respect to the abstraction of time, structure, or behavior.

transaction level model, transaction level modeling (TLM): A model at the transaction level and the act of
creating such a model, respectively. Transaction level models typically communicate using function calls, as
opposed to the style of setting events on individual pins or nets as used by RTL models.

OSCI TLM-2.0 USER MANUAL

Copyright © 2007-2008 by the Open SystemC Initiative (OSCI) 141

transactor: A module that connects a transaction level interface to a pin level interface (in the general sense
of the word interface) or that connects together two or more transaction level interfaces, often at different
abstraction levels. In the typical case, the first transaction level interface represents a memory-mapped bus or
other protocol, the second interface represents the implementation of that protocol at a lower abstraction level.
However, a single transactor may have multiple transaction level or pin level interfaces. See adapter, bridge.

transport interface: The one and only bidirectional core interface in TLM-1. The transport interface passes a
request transaction object from caller to callee, and returns a response transaction object from callee to caller.
TLM-2 adds separate blocking and non-blocking transport interfaces.

unidirectional interface: A TLM 1 transaction level interface in which the attributes of the transaction object
are strictly readonly in the period between the first timing point and the end of the transaction lifetime.
Effectively, the information represented by the transaction object is strictly passed in one direction either from
caller to callee or from callee to caller. In the case of void put(const T& t), the first timing point is marked
by the function call. In the case of void get(T& t), the first timing point is marked by the return from the
function. In the case of T get(), strictly speaking there are two separate transaction objects, and the return
from the function marks the degenerate end-of-life of the first object and the first timing point of the second.

untimed: A modeling style in which there is no explicit mention of time or cycles, but which includes
concurrency and sequencing of operations. In the absence of any explicit notion of time as such, the
sequencing of operations across multiple concurrent threads must be accomplished using synchronization
primitives such as events, mutexes and blocking FIFOs. Some users adopt the practice of inserting random
delays into untimed descriptions in order to test the robustness of their protocols, but this practice does not
change the basic characteristics of the modeling style.

valid: The state of an object returned from a function by pointer or by reference, during any period in which
the object is not deleted and its value or behavior remains accessible to the application. (SystemC term)

within: The relationship that exists between an instance and a module if the constructor of the instance is
called from the constructor of the module, and also provided that the instance is not within a nested module.
(SystemC term)

yield: Return control to the SystemC scheduler. For a thread process, to yield is to call wait. For a method
process, to yield is to return from the function.

	Overview
	Scope
	Source code and documentation

	References
	Bibliography

	Introduction
	Background
	Transaction-level modeling, use cases and abstraction
	Coding styles
	Initiators, targets, sockets, and bridges
	DMI and debug transport interfaces
	Combined interfaces and sockets
	Namespaces
	Header files and version numbers

	TLM-2 core interfaces
	Transport interfaces
	Direct memory interface
	Debug transport interface

	Combined interfaces and sockets
	Combined interfaces
	Initiator and target sockets
	Convenience sockets

	Generic payload
	Introduction
	Extensions and interoperability
	Generic payload attributes and methods
	Class definition
	Generic payload memory management
	Constructors, assignment, and destructor
	Default values and modifiability of attributes
	Command attribute
	Address attribute
	Data pointer attribute
	Data length attribute
	Byte enable pointer attribute
	Byte enable length attribute
	Streaming width attribute
	DMI allowed attribute
	Response status attribute
	Endianness
	Helper functions to determine host endianness
	Helper functions for endianness conversion
	Generic payload extensions
	Instance-specific extensions

	Phases and base protocol
	Phases
	Base protocol

	Other classes
	Global quantum and quantum keeper
	Payload event queue
	Analysis interface and analysis ports

	TLM-1 legacy
	TLM-1.0 core interfaces
	TLM-1.0 fifo interfaces
	tlm_fifo

	Glossary

