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Abstract

This paper presents the profiling of EEMBC MultiBench programs. We have executed 16 parallel benchmark workloads on
M5 simulator. The simulated platform contains 64 dual-issue cores with 16+16KB private L1 caches and distributed 16x1MB
L2 cache, running at 2 GHz. The L1-L2 bus runs at 1GHz and is 64 Bytes wide. The measured parameters included application
performance as instruction-per-cycle (IPC), traffic on L1-L2 bus, and L1 cache miss penalties. Simulation was very time consuming
(about 1 day of CPU time per run) and hence limited to 1 second of application runtime. Measurements varied both the number
of parallel workloads and worker threads per workload. Performance peak occurs when there are as many threads as cores, i.e. 64.
Running parallel workloads achieves higher performance than using multiple workers for small number of concurrent workloads.
The measured IPC varied in the range 0.2− 16.8 and bandwidth 0.9− 49 GByte/s. The average IPC was surprisingly low, only
about 2 instructions per cycle, whereas the average bandwidth in L1-L2 bus was 9.2 GByte/s.
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I. INTRODUCTION

This paper presents the profiling of parallel benchmark programs. Modern multiprocessor system-on-chip (MPSoC) includes
tens of heterogeneous IP blocks, such as CPUs, memories, input/output devices, and HW accelerators, see for example [13],
[24]. Figure 1 shows an example of our 64-core target system. Our target system has 64 cores and each core has private
I-cache and D-cache. The cores can access a shared L2 cache space through a L1-to-L2 network. The 16 L2 cache banks are
distributed across the entire processor and are located together with 16 memory controllers.

Fig. 1: The NoC in manycore system with distributed L2 cache banks [15].

Network-on-Chip (NoC) design paradigm brings the techniques developed for macro-scale, multi-hop networks into a chip to
improve system performance and design. The major goal is to achieve greater design productivity and performance by handling
the increasing parallelism, manufacturing complexity, wiring problems, and reliability [1], [16], [17] . Many NoCs have been
proposed in literature [3], [19], [20] but comparing and analyzing those remains problematic due to vague documentation and
proprietary test cases. Hence, accurate, representative traffic models for benchmarking and designing NoCs are needed.

We at OCP-IP NoC Benchmarking group are currently working towards standardized test case set and methodology [8], [21].
We have published for example a SystemC tool called Transaction Generator (TG) [23] which includes two sets of benchmark
applications [18] [14]. In general, test cases can be divided into computation kernels (e.g. IIR, FFT) and full applications (e.g.
image and video processing, telecommunications). Both types can be modeled in many different ways. Actual applications
give the best accuracy but majority of publications use synthetic traffic, such as uniform random traffic [19], [20].

We are aiming at traffic profiles of real applications as a trade-off between these extremes. They should provide adequate
accuracy (much better than purely synthetic) and also easier portability, scaling, and analysis (much better than applications).
Moreover, we encourage designers to systematically evaluate a large set of traffics scenarios and system parameters, see for
example [22]. This paper presents the profiling of EEMBC MultiBench 1.0 multicore benchmark suite [7], [9], [10] on 64-core
system using M5 and BookSim simulators [2] [6].

EEMBC benchmark performance is measured while varying the number concurrent workloads and worker threads per
workload. The results indicate that increasing the number of concurrent workloads can significantly improve the system
performance. We also find the classical L1-to-L2 bus network does not always provide enough bandwidth for EEMBC
benchmarks. For example, a more complicated electrical or silicon-photonic NoC that provides higher bandwidth can be
beneficial for these benchmark programs. The following chapters present discussion about profiling and the detailed result
spreadsheet can be downloaded from the OCP-IP web site1.

II. EEMBC MULTIBENCH

EEMBC MultiBench 1.0 is a multicore benchmark suite meant for measuring the throughput of multiprocessor systems,
including those built with multicore processors [7], [9]. The user may change the number of workers running in parallel, size
of the dataset, as well as their binding to processing elements. Software assumes homogeneous general-purpose processing
elements. Threads are used to express concurrency, and each thread has symmetric memory visibility. In EEMBC terminology,
kernel means the algorithm to be executed (e.g. jpeg decompression). Work Item binds a kernel to specific data (e.g. jpeg
decompression of 16 images) whereas workload consists of one or more work items (e.g. jpeg decompression of 16 images,
rotation of the results, and jpeg compression). One or multiple worker threads can be assigned to each work item. Figure 2
shows the concept of concurrent workloads and workers.

The suite addresses 3 challenges:

1http://www.ocpip.org/white papers.php

http://www.ocpip.org/white_papers.php
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1) Portability - Benchmarks must be portable to many different embedded architectures. Therefore, the kernels are written
in C which is the de facto standard in the embedded industry. Moreover, the API related to parallel programming has
been minimized to 13 calls and 3 data structures. There is a direct mapping to the more complex pthreads interface.

2) Scalability - Arbitrary number of computation contexts is supported and performance is measured as workloads per
second. Amount of work can be kept constant regardless of the number of contexts used.

3) Flexibility - Benchmarks support many approaches to parallel programming, such as task decomposition (workers running
in parallel) and data decomposition (multiple threads processing single piece of data). However, functional pipelining is
not considered in version 1.0.

MultiBench 1.0 includes embedded algorithms from earlier EEMBC suites and some new ones. Tasks include for example
processing TCP/IP packets, image rotation, MD5 checksums, and video encoding. The suite includes about 30 workload
applications written in C and user can create more by instantiating work items in workload creator program GUI. Table I
summarizes the 16 profiled workloads. They are sorted according to average IPC in our measurements (see next sections). We
chose to limit the working set size to 4M per context, e.g. 4 megapixels. EEMBC benchmarks have previously been analyzed
for example in [10]–[12].

Worker 1 Worker 3

Mapped to cores in manycore system as threads

Worker 2

Workload A           

Worker 4

Workload B           

Benchmark Program           

Fig. 2: Example of 2 concurrent workloads A and B and 2 workers per workload. There are 4 threads in total to be mapped
on a multiprocessor. This setup would be denoted as c2w2.

TABLE I: Benchmarked EEMBC MultiBench programs, in the order of increasing average IPC. Maximum IPC and L1-L2
BW are measured with 64 threads and average IPC for 1-64 threads.

# Program Avg Max Max BW Description
IPC IPC [GB/s]

1 ipres-4M 0.4 0.8 7.8 Send 4 greyscale images to a printer over the network
2 4M-reassembly 0.6 0.8 7.8 Reassemble fragmented IP packets
3 4M-check-reassembly 0.7 0.9 6.3 Check and reasssemble IP packets
4 4M-check-reassembly-tcp 1.0 3.0 14.3 Pass network to target
5 4M-check-reassembly-tcp- 1.1 2.5 17.3 Send images over network,

-cmykw2-rotate and print in landscape orientation
6 4M-check 1.2 2.8 15.8 Check IP packet header
7 rotate-34kX128w1 1.5 2.3 15.7 Rotate 128 images by 90 deg clockwise
8 rotate-color1Mp 1.6 5.0 37.7 Rotate 1 MPixel color image by 90 deg
9 4M-cmykw2-rotatew2 1.6 4.0 21.9 Combine rotation and color conversion

10 4M-rotatew2 1.8 5.5 20.0 Rotate image by 90, 180 or 270 degrees, memory intensive
11 4M-tcp-mixed 2.4 15.0 20.9 Most processing-intensive portion of RFC793 protocol
12 md5-4M 2.5 7.9 18.0 Message-digest checksum used in cryptography
13 4M-check-reassembly-tcp-x264w2 2.7 7.7 23.3 Encode video H.264 and send over the network
14 rgbcmyk-4M 3.1 9.2 49.4 Convert RGB to CMYK color
15 iDCT-4M 3.3 16.8 21.0 Inverse discrete cosine transform, from Automotive suite
16 4M-x264w2 6.9 13.7 37.2 Encode H.264 video, computationally intensive.

III. PROFILING SETUP

Figure 3 shows our profiling approach using M5 full-system simulator [2] that is integrated into BookSim network simulator
[6]. Applications are simulated and accurate log files are generated. Since detailed simulation is slow and somewhat tedious,
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Fig. 3: Simplified view of the profiling and benchmarking steps.

we expect that most NoC benchmarking and design space exploration is carried out with abstract workload models, e.g. using
Transaction Generator [23] and processed traffic traces.

A. Simulators

M5, or gem5, is a full system simulator developed in C++/Python by University of Michigan. It is freely available2 under
Berkeley-style license. It can simulate the performance of the entire computer systems. For example, the user can choose
various ISA (such as Alpha, AMD and x86), cache architecture (private L2 cache or shared L2 cache), and the dimension of
chip components (such as core counts, number of floating point units, and L1/L2 cache sizes).

Since the bus topology does not always provide sufficient network bandwidth, we have integrated the BookSim network
simulator into M5. BookSim is an open source3 network simulator developed in C++ by Stanford University. It can simulate
the performance and power of various network configurations. For example, the user can choose various network topologies
(such as mesh, clos and crossbar), the use of virtual channel technology and the dimension of network components (such as
channel width and router butter size), etc.

Unfortunately, simulating topologies other than bus is significantly lower. For example, the execution of 1 second of EEMBC
benchmark in simulator can take 2 − 4 days on a 2.3 GHz single-core host machine. It is nearly 3x slower than the same
benchmark with the default bus topology. Thus in Section IV, we use the default bus in M5. However, some benchmarks with
large number of concurrent workloads require very high network bandwidth and the default bus topology saturates.

B. Metrics

The measured properties include network bandwidth, benchmark performance demands, and bus latency, as listed in Table II.
Instrcution per cycle (IPC) is the primary performance metric in this study as it measures the amount of computation performed.
Bandwidth does go hand in hand with IPC, however small bandwidth is preferred to keep bus non-saturated. Cache miss latency
denotes the time that CPU is stalled upon a cache miss, and of course smaller cache miss latency is better for performance.

The two last columns list the measured typical values. The minimum and maximum values shows the difference be-
tween benchmark programs. Column w1 includes 4 cases w1c1, w1c4, w1c16, w1c64, whereas w16 includes only 2 cases
w16c1, w16c4. Columns c1 and c16 are collected similarly. We also notice parallelism (many concurrent workloads and
workers) makes all the numbers larger.

TABLE II: Measured properties on a 64-core system running at most 64 threads.

Metric Unit Min, Avg, Max Min, Avg, Max
w1 w16 c1 c16

Instruction per cycle (IPC) 1/cycle 0.2, 2.3, 16.8 0.2, 1.8, 11.2 0.2, 1.0, 3.9 0.2, 3.2, 13.7
L1-L2 bandwidth (BW) GByte/s 1.1, 10.3, 49.4 1.0, 8.5, 27.7 0.9, 5.3, 14.5 1.2, 13.5, 37.2
L1 miss penalty cycle 94, 268, 1957 92, 196, 413 92, 204, 422 89, 257, 1037

2[Online] http://www.m5sim.org/Main Page
3[Online] https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim

http://www.m5sim.org/Main_Page
https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim
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data bus/crossbar

arbitration request/response 
and network reconfiguration 
control lines

core & cache

Memory controller

Fig. 4: Bus layout between L1s and L2s in a 64-core manycore processor [15]

TABLE III: Micro-architectural parameters of the target system in M5.

Micro-architecture Configuration

Core Frequency 2.0 GHz
Issue 2-way Out-of-order
Reorder Buffer 128 entries
Functional Units 2 IntAlu, 1 IntMult

1 FPALU, 1 FPMult
Physical Regs 128 Int, 128 FP
Instruction Queue 64 entries
Branch Predictor Tournament predictor

L1 ICache 16 KB @ 2 ns each
L1 DCache 16 KB @ 2 ns each

L2 Cache 4-way set-associative, 64 B block
Distributed 16 x 1 MB @ 6 ns

NoC Split bus, 1.0 GHz, 64 Bytes
Main memory 1GB, 50 ns access time (100 cycles)

C. Settings

The target system parameters are listed in Table III. The system is composed of 64 cores, 128 L1 caches (1 I-Cache and 1
D-Cache per core), distributed L2 cache (16 banks), and 16 memory banks (enough size to hold the working set). The 128 L1
caches are connected to a L2 cache through a L1-to-L2 bus. Each L2 bank cache is connected to memory through L2-to-mem
bus. The address space is interleaved among the L2 cache banks and memory banks. The bus bandwidth demands and bus
penalty shown in our plots are those measured on L1-to-L2 bus.

Figure 4 shows an example of L1-to-L2 networks. This network uses split-bus topology and the bus arbitration block is
located in the center of the chip. Our simulations use this L1-to-L2 bus network to show the effect of network demands of
EEMBC benchmarks.

The core works at 2 GHz and the rest of the system works at 1 GHz. A typical L1 miss penalty include L1-to-L2 bus
round trip latencies (20+ core cycles) and L2 access time (6 ns = 12 core cycles) at minimum, whereas L2 miss requires
additional L2-to-mem bus round trip latency (more than 10 core cycles) and memory access time (50 ns = 100 core cycles).
These example bus round trip latencies are the so called zero-load latencies, which only happen in the ideal case when there
is no bus contention. In a real system, the bus has slightly higher latencies, but they increase very rapidly if the traffic load
increases beyond the saturation threshold.

For each benchmark, we compare 1, 4, 16, 64 concurrent workloads (shown as ’c’) and 1, 4, 16, 64 workers for each
workload (shown as ’w’). For example, w64c64 means 64 workloads with 64*64 workers (threads) working on it. Thus
4 · 4 = 16 simulations were needed for each of the 16 workloads (256 runs in total).

We didn’t control the mapping. Since we use the full system mode of Gem5 simulator, the Linux OS running on the target
machine determines the thread mapping according the available core count. For 64 threads running on 64 cores, we could see
1 thread mapped onto one core. We didn’t do thread binding, thus there might be thread migrations.

Please note we simulate at most 1s due to limited simulation speed. Some of applications didn’t complete in that time and
we only consider the average value and tracing within 1s.
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(a) Instructions-per-cycle

(b) Bandwidth

(c) Average L1 miss penalty

Fig. 5: Profiling results when running the benchmark programs alone (fixed c = 1) and varying the number of workers per
workload (w = 1, 4, 16, 64). The benchmark names corresponding to the IDs can be found in in Table I.

IV. FINDINGS

We run the benchmark programs with various number of parallel workloads c with various number of workers per workload
w. Figure 5 shows the simulation results while fixing the number of workloads (c = 1) and changing the number of workers
per workload (w = 1, 4, 16, 64). On the other hand, Figure 6 shows the simulation results while changing the number of
workloads (c = 1, 4, 16, 64) and fixing the number of workers per workload (w = 1). The benchmarks names corresponding
to the benchmark ID can be found in Table I. The complete measurement results can be found in Appendix and the associated
Excel spreadsheet.

A. Workers (threads)

The first method of improving the system performance is to increase the number of workers (threads) of each workload.
Figure 5 shows that the system performance, measured in instructions per cycle (IPC), increases when we increase the number
of workers from 1 to 64 for all benchmarks. The results are sorted in asceding order of average IPC. However, measured IPC
is surprisingly low on average, IPCw=1 = 0.7 and IPCw=64 = 1.5.

There is, of course, variation between applications. The ratio between max and min IPCs is 3− 20x, and between max and
avg about 1.5− 3x. There are some peculiar results. For example, a spike at 64 workers with workload #15, iDCT. In some
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(a) Instructions-per-cycle

(b) Bandwidth

(c) Average L1 miss penalty

Fig. 6: Profiling results when running the benchmark programs with various number of concurrent workloads (c = 1, 4, 16, 64)
and just a single worker per workload (fixed w = 1). The benchmark names corresponding to the IDs can be found in in
Table I.

cases, the IPC increases otherwise but drops with w16, e.g. #1 and #13. The exact reason is yet unknown.
Fig. 5(b) shows the offered bandwidth in L1-L2 bus. On average, BWw=1 = 1.8 GB/s and BWw=64 = 6.1 GB/s. Most

benchmarks show that the offered bandwidth also increases while the number of workers increases. However, some benchmarks
(such as #1, #3) show that the offered bandwidth can decrease by 2− 3x when running the workload with 32 or 64 workers.
This is because the increasing number of parallel threads requires more synchronization and larger IPC causes more contents
to be processed in a given period. Measured bandwidth drops when the system suffers very high L1 miss penalties, as seen in
cases #1-#5 and #13 in Figs. 5(b) and 5(c).

A significant portion of L1 miss penalties is due to the round-trip latencies in L1-to-L2 bus. While increasing the number
of workers, the L1-to-L2 arbitration time increases and the increasing bandwidth demand causes contentions in the L1-to-L2,
which therefore causes the decrease in offered bandwidth and the increase in L1 miss penalties. In many cases, miss penalty
is rather constant when w increases and sometimes it even decreases a little. However, in 5 cases setting w = 64 nearly
doubles the miss latency, and in 4 cases this happens on both w = 32 and w = 64. On average, tL1miss,w=1 = 180 and
tL1miss,w=64 = 239 cycles.

In Figure 5, the offered bandwidth in the L1-to-L2 bus varies in the range of 0.94−14.5 GByte/s (0.47−7.26 Byte/cycle



CHEN ET AL., EEMBC MULTIBENCH PROFILING, WHITE PAPER, c© OCP-IP, JUNE 2013 8

w.r.t. CPU clock) and the average offered bandwidth is 5.3 GB/s. The system performance (IPC) varies in the range of
0.19− 3.92, and the average system performance (IPC) is 1.04. The system performance scales, but not well, while increasing
the number of workers for a single workload.

B. Concurrent Workloads

We have shown that the EEMBC benchmarks show some performance improvements while we scale up the number of
workers for each workload. Another method of increasing the system performance is to execute multiple concurrent workloads
and it seems more powerful. In Figure 6, we fix the number of workers for each workload (w = 1), while increasing the
number of concurrent workloads. We find that both the system performance and offered bandwidth increases more than in
previous experiment. For some benchmarks (such as #8, #9 and #10), the L1-to-L2 bus reaches the saturation region while
running 64 concurrent workloads, and therefore the system suffers extremely high L1 miss penalties (about 1 000 − 2 000
cycles).

Figure 6 shows that the system performance, IPC, varies now in the range of 0.2− 16.82, and the average IPC is 2.3. The
offered bandwidth in the L1-to-L2 bus varies in the range of 1− 50 GByte/s (0.5− 25 Byte/cycle), and the average offered
bandwidth is 9.2 GByte/s. Average cache miss penalty increases by 30% from previous case to 260 cycles. By comparing
Figure 5 and Figure 6, we find that the system performance improves more significantly while we increase the number of
concurrent workloads.

C. Increasing both the workers and workloads

Fig. 7 shows how IPC and bandwidth demand rise when the number of threads increases. However, since there are 64 cores,
both values peak at 64 threads and either saturate or drop after that. Both average and maximum values behave similarly.
Therefore, the detailed results in appendices do not include cases where number of threads exceeds 64, i.e. cases w4c64,
w16c16, w6, 64, w64c4, w64c16, and w64c64.

Fig. 7(c) shows the IPC with 64 threads on different applications. It is evident that larger c benefits more than large
w. However, average IPC is lower than expected, and should be investigated more thoroughly. For example, our previous
simulations show that PARSEC and NAS benchmarks could achieve an IPC of 10 − 30 while running 64 threads on same
64-core manycore platform [4], [5], [15] (the core frequency might differ, though).

V. CONCLUSIONS

This paper gives an overview of profiling the EEMBC benchmark suit which is summarized in Table IV. Our methodology
integrates M5 and BookSim simulators in order to evaluate EEMBC and other parallel benchmarks with various NoC config-
urations. The collected traffic traces can be later utilized in NoC benchmarking with traffic generators. Our simulation results
show a maximum offered bandwidth of 50 GByte/s, and a maximum system performance (IPC) of 16.82. The average values
are about 9 GByte/s and 2 IPC. We also find that given a 64-core manycore system, both increasing number of concurrent
workload and increasing number of workers per workload can help improve the system performance. But the number of
concurrent workload shows a more significant impact on the system performance. Detailed simulation results are collected in
the accompanied spreadsheet chen eembc profiling 2013.xlsx.
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VI. APPENDIX: DETAILED RESULTS

Fig. 8: IPC or each program.
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Fig. 9: L1-L2 bandwidth of each program.
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Fig. 10: Cache miss latency of each program.
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