

Requirements specification
for

SystemC Analog Mixed Signal (AMS) extensions

Version 2.1
March 8, 2010

Copyright (c) 1996-2010 by all Contributors.
All Rights reserved.

 2

Copyright Notice
Copyright © 1996-2010 by all Contributors. All Rights reserved. This software and
documentation are furnished under the SystemC Open Source License (the License).
The software and documentation may be used or copied only in accordance with the
terms of the License agreement.

Right to Copy Documentation
The License agreement permits licensee to make copies of the documentation. Each
copy shall include all copyrights, trademarks, service marks, and proprietary rights
notices, if any.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of
the United States of America. Disclosure to nationals of other countries contrary to
United States law is prohibited. It is the reader’s responsibility to determine the
applicable regulations and comply with them.

Disclaimer
THE CONTRIBUTORS AND THEIR LICENSORS MAKE NO WARRANTY OF
ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
SystemC and the SystemC logo are trademarks of OSCI.

Bugs and Suggestions
Please report bugs and suggestions about this document to

http://www.systemc.org

 3

Contributors

Karsten Einwich Fraunhofer EAS/IIS Dresden

Christoph Grimm Vienna University of Technology

Wolfgang Granig Infineon Technologies

Gerhard Noessing Infineon Technologies

Wolfgang Scherr Infineon Technologies

Serge Scotti STMicroelectronics

Martin Barnasconi NXP Semiconductors

Giorgia Zucchelli NXP Semiconductors

Alain Vachoux Ecole Polytechnique Fédérale de Lausanne

History

Version Editor Update comments Date
0.1 Martin Barnasconi Initial version 29/11/2006
0.2 Martin Barnasconi Update based on AMSWG review 17/01/2007
1.0 Martin Barnasconi Approved internal version by AMSWG 05/03/2007
1.1 Martin Barnasconi Introduction, numbering of requirements, short

explanation for each requirement added
29/07/2008

1.2 Martin Barnasconi Added Annex A. comparison table, reviewed
version AMSWG f2f meeting October 15/16 2008.

21/10/2008

2.0 Martin Barnasconi Approved version by AMSWG 25/11/2008
2.0 Martin Barnasconi Version for public release 02/12/2008
2.1 Martin Barnasconi Version for public release AMS 1.0 Standard 08/03/2010

 4

 5

Introduction

On February 15 2007, the Analog/Mixed-Signal (AMS) Working Group adopted the
following charter:

“The Analog/Mixed-Signal (AMS) Working Group develops and recommends
techniques and provides AMS extensions to the SystemC language standard, promoting
the modeling of heterogeneous systems including both continuous-time and discrete-
event behaviors at architectural level.
Main purpose is to enable specification, simulation, verification, implementation and
evaluation of embedded heterogeneous systems containing digital, analog, mixed-signal
and radio frequency functions, which are characterized in electrical or non-electrical
domains.”

This document covers the requirements for the definition of the OSCI AMS standard,
which is being developed by the OSCI AMS Working Group.

The AMS working group has identified several objectives for Analog/Mixed-Signal
Modeling:

- Analyze and standardize extensions of SystemC with a semantic for describing:
o non-conservative and conservative systems
o continuous value/signal and time descriptions
o electrical or non-electrical domains and quantities

- Extend SystemC with C/C++ class libraries for analog, mixed-signal and radio
frequency language constructs, which require additional Models of Computation
(MoC) and dedicated solvers. For these extensions, techniques for continuous
value/signal/time representations and time synchronization mechanisms are
explored.

- Disseminate the SystemC AMS extensions by providing examples and
application-specific libraries, such as wired and wireless communication
systems, automotive and sensor applications.

The OSCI AMS standard will focus on extending the SystemC standard with semantics
and language constructs for AMS application modeling. We also provide a set of
predefined primitives to model AMS components and systems at different levels of
abstraction.

Part I of this document describes the motivation, AMS applications and use cases for
analog/mixed-signal modeling. This informative section also explains the positioning
and scope of the standardization of the SystemC AMS extensions within the design and
simulation environment.

Part II defines the detailed implementation requirements for the OSCI AMS standard.

 6

Acronyms and Terms
The OSCI AMS Working Group has created a separate document (OSCI AMS
Glossary) that describes in detail the terms and acronyms used in this document. Please
refer to that document.

 7

 Part I: Motivation, applications and use cases
Part I provides the motivation, applications and use cases for the SystemC
AMS extensions.
The goal of this section is to outline the purpose of AMS modeling. The detailed
implementation requirements, which are described in the next chapter, should be
applicable for the application domains listed below and should satisfy the use case
requirements defined in this section.

1 Why include AMS and/or RF in ESL design
The analog and/or RF content on a Systems-on-a-Chip, including its environment, will
play an even more dominant role in the definition and verification of the embedded
system as the number of RF interfaces to support (multi-mode) wireless and cellular
standards will increase. Similarly, the number and the speed of analog serial interfaces
both on-chip and off-chip will increase (e.g. NoCs) significantly. Also EMC/EMI
related effects due to these very high-speed and RF interfaces will influence the
performance of the integrated circuits and need to be modeled as early as possible in the
design cycle.

Heterogeneous systems require an Integrated Design and Simulation Environment. In
particular, the increasing complexity of sensor-actuator-systems in industry and
automotive requires a modeling interface to non-electrical domains. Also modeling of
highly complex heterogeneous systems requires different Models of Computation
(MoC) to improve simulation speed.

2 Heterogeneous System IC Design
If one considers the currently accepted abstraction levels for a system, it is clear that
there is no modeling language for the AMS domain at the architectural level (Fig 1).

Specification

SystemC

SoC
InterfaceAMS D

RF

missing
abstraction

SystemVerilog,
VHDL, Verilog

VHDL-AMS,
Verilog-AMS

Functional

Architecture

Implementation

Fig 1: Missing AMS modeling language at architecture level

 8

At architecture level, for purely digital systems, SystemC is being the widely accepted
language. Therefore, it be logical to extend SystemC with an analog/mixed-signal
capabilities by developing the SystemC AMS extensions. The combination of SystemC
with the SystemC AMS extensions would provide a powerful simulation environment
for the design and evaluation of heterogeneous systems at the architecture level.
However, it would be also very advantageous to ensure that this complete SystemC
environment can be easily coupled to both the functional and the implementation
simulation domains to provide a common integrated design environment (IDE) for both
system and circuit designers.

Fig 2 shows how the abstraction levels would look when the SystemC AMS extensions
become available.

Analog Circuit
Accurate view

Analog
Behavioral view

Analog pin compatible
non-ideal behavioral
model

Analog
non-ideal behavioral
model

Digital views
View Level of detail Language(s)Level Language(s)Analog

View

Functional View Function-calls
Function

Functional
Level

UML
C/C++

C/C++Analog Functional Functional descr.
view

Cycle Accurate (CA) Word transfers
Clock Edge Cycle-accurate

Programmer’s View + Timing (PVT) Bus arch.
Timed Protocol Timing approx.

Programmer’s View (PV) Bus-generic
Memory Map Architecture

Register Transfer Level (RTL) Signal/Bit
Implementation Cycle-accurate

A
rchitectural Level

Im
plem

entation
Level

VHDL
Verilog

SystemC

Gate Level

Analog Architectural
view

SystemC
AMS
extensions

VHDL-AMS
Verilog-A(MS)

Analog Circuit Transistor
Level schematic

Spice netlist
Verilog-A

Device Level
Compact model

Level of detail

Circuit Level

Device Level
Compact model

Process libraries (PDKs)

Dominant
non-ideal
behaviour

Analog/MS/RF views

Fig 2: Abstraction levels for digital and analog/mixed-signal and RF views

As can be concluded from Fig 2, the SystemC AMS extensions will not be a
replacement of circuit level simulation for analog, mixed-signal or RF circuitry (using
Spice, FastSpice, ...) nor a replacement of behavioral modeling and HDL languages
such as Verilog-AMS or VHDL-AMS.

 9

3 Application domains
The SystemC AMS extensions will be applied in multiple application domains. This
chapter gives an overview of the different application domains which need to be
supported by methodology and technology libraries (see also Fig 7). Main focus is on
modeling of the physical layer (PHY) or subsystems, within the context of the complete
system architecture or application (e.g. ISO/OSI protocol stack, architecture HW/SW or
application SW).

Wireless & Cellular communication systems
Examples of standards:

- WLAN (802.11a/b/g, 802.11n, ...) (see Fig 3)
- WiMAX (802.16d/e), WiBro
- Bluetooth, Zigbee, Wibree,
- GSM/EDGE, UMTS, WCDMA
- Wireless USB (Ultra Wide Band)
- Wireless sensor networks

Fig 3: Wireless LAN Physical layer

Broadcast
Examples are:

- FM radio
- DVB-T, DVB-H (TVoM), ...

High-speed serial (physical) interfaces
Examples are PCI express, MIPI, USB, HDMI, ...

 10

Automotive systems
Examples are:

- Power drivers (switching)
- Sensor interfaces
- Control systems (see Fig 4)

Fig 4: Power driver for Automotive system

Wire-line communication systems and interfaces
Examples are:

- POTS, ADSL, VDSL, SHDSL, … (see Fig 5)
- Line/channel models

Fig 5: Wire-line communication system

Physical interfaces
Examples are:

- Sensors for magnetic field, pressure, temperature
- Power lines for actuators

 11

4 Use Cases and Use models
The SystemC AMS extensions will be used for different tasks in the design process.
This chapter gives an overview of the different use cases and use models in which these
should be used.

4.1 Executable specification
- Dimensioning/specification of the system function
- Validation of the protocol (communication protocol, OSI/ISO layers, ...)
- Algorithm design (MPEG4, H264, Viterbi, OFDM puncturing, ...)
- Mapping functional specification onto a reference architecture

4.2 Architecture exploration
- Architecture/IP definition and partitioning (Busses, IP blocks, voltage domains,

CPU elements, ...)
- Architecture technology trade-offs (SW, Digital HW, Analog/RF HW)
- Performance optimization, SW optimization, HW optimization

4.3 Integration validation
- IP verification including mixed-abstraction level (co-)simulation (e.g.

Functional/Architectural co-verification)
- Digital HW IP Creation from C via SystemC (TLM) to VHDL/Verilog (RTL)
- Analog/RF HW IP Creation from C to SystemC AMS extensions to Verilog-

AMS and transistor level
- IP verification and mixed-domain (co-)simulation (e.g. HW/SW co-verification)
- System validation and testing based on HW prototyping platform

4.4 Virtual prototyping
- Embedded Software/Firmware definition
- Middle layer (driver) and application SW development
- Software integration validation on the platform
- Network and protocol (OSI-model) simulation

 12

5 Positioning of an environment for the SystemC AMS
extensions

SystemC has become the accepted modeling language for digital architectures, while
there is an increasing need to integrate complex AMS functions into these systems. In
this context, the AMS extensions should be seen as an addition to the SystemC
environment. It should address the following design needs:

Design complexity is increasing

- A higher level design abstraction is required for the analog domain which
o must cope with (new) architectural elements (e.g. RF-baseband serial

busses)
o be able to undertake top-level system and functional verification
o be able to provide architectural exploration of multiple SoC designs

- Need to develop reference architectures
o to map different functional requirements onto a single AMS and/or RF

architecture
o to explore different AMS and/or RF architectures fitting to the functional

requirement

Need for analog/digital co-design
- Protocol specification has become an integral part of the definition and

implementation phase of the physical layer
- Increased interaction between analog and digital design implementation

o digital assisted analog components require a common integrated design
environment for system and circuit design

Need for (AMS) hardware/software co-design

- towards adaptive, reconfigurable systems and software defined radio
o more MODEM functions implemented in firmware (DSP)
o standardized interface requirements (API) to PHY function

Overcome EDA tool limitations
- There is no true architecture design tool available for AMS/RF system design &

verification
- There is no interface between the AMS/RF architectural design and the digital

architecture design approach
- There is no agreed system modeling language to include AMS/RF architectures

Platform for improved AMS and/or RF model exchange

- Documented and open model interfaces independent of a single tool vendor
- Based on C/C++
- IP protection capability (compiled code)
- Enable virtual prototype (executable spec) approach

 13

5.1 Design and simulation environment
SystemC extended by AMS capabilities should become available as a complete
simulation environment for modeling at architectural level and should be embedded in
the overall design environment, as shown in Fig 6.

Specification

SystemC

SoC
InterfaceAMS D

RF

SystemVerilog,
VHDL, Verilog

VHDL-AMS,
Verilog-AMS

SystemC
AMS extensions

Functional

Architecture

Implementation

Simulation
environment

Design
environment

Fig 6: Design and simulation environment for SystemC and the AMS extensions

It is essential that the overall design environment should have the capability of
simulating a complete system, with components modeled in all possible abstractions.

5.1.1 Design environment requirements

5.1.1.1 User-friendly environment for the Architectural evaluation of
Heterogeneous Systems

- Need for a flexible and adaptable framework is favorable over a (complex)
specialized framework

5.1.1.2 System design through all abstraction levels and behavioral views
- Environment enabling descriptions with multiple abstraction levels
- System design with hierarchical structure

5.1.1.3 Library consistency with different abstraction levels / tools in the flow
and simulation domains

- Libraries based on standard languages or specific library interfaces
- Availability of source code of the models

5.1.1.4 Model re-use, develop behavioral models for bottom-up verification
- Non-linear frequency-dependent models
- Interface to third-party behavioral languages

 14

5.1.2 Simulation Environment Requirements

5.1.2.1 Evaluation of system performances at all abstraction levels
- Link between abstraction levels and MoCs enabling hierarchical simulation
- Heterogeneous system environment: specify MoC appropriate for the analysis of

each task
- Simulation of system specs to generate/evaluate sub-blocks specs

5.1.2.2 Analysis of synchronization and timing issues for system
performance optimization

- Cope with fast correction loops
- Mixed-signal simulation: synchronized digital (discrete-event) solver and analog

(continuous-time) solvers

5.1.2.3 Impact of implementation specific non-linear impairments on the
system

- Co-simulation of architecture level and implementation

5.1.2.4 Class libraries for SystemC AMS extensions should comply to the
SystemC build environment

- Support the same operating systems and platforms
- Support the same versions of compiler/linker tools (e.g. gcc, etc)

 15

 Part II: AMS Implementation requirements
The definition of the SystemC AMS extensions should be seen as an addition to the
SystemC standard, without any change to the SystemC standard itself or its reference
implementation. Also a potential proof-of-concept implementation should use
Standardized IEEE Std 1666-2005 compliant features of SystemC, and should not rely
on implementation details of the SystemC implementation.

The objective is to build a single executable of the architectural description, including a
synchronized digital discrete-event solver and a continuous-time analog solver.
Therefore, the SystemC AMS extensions should comply to the layered SystemC
structure defined in the Language Reference Manual (LRM) Annex A (see also red
colored elements in Fig 7 below), providing an efficient object-oriented extension of
IEEE Std 1666-2005.

Programming Language C++

User Application

Core Language

Modules
Ports
Processes
Interfaces
Channels
Events

Predefined
Channels

Signal, Clock, FIFO
Mutex, Semaphore

Utilities

Report Handling,
tracing

Data Types

4-valued logic
4-valued logic vectors
Bit Vectors
Arbitrary precision integers
Fixed point Types

Core
Language

Analogue Modules
Ports, Connectors
Solver and
Synchronization
API

Models of
Computation

Advanced Data
Flow MoC

Analogue Solvers
(linear, non-linear)

Data Classes

Data Types
Data Processing

Methods
Data Units

Methodology and Technology specific Libraries

SystemC Verification Library, bus models, TLM interfaces

Methodology and Technology specific Libraries

SystemC-AMS testbench utilities, AMS macro models, etc

S
ystem

C
 A

M
S

exten
sio

n
s

S
ystem

 C

Utilities

Look up tables
Read/Write to Standard

Formats
Constants and Variables

 Fig 7: SystemC and the AMS extensions

6 Implementation requirements
The implementation requirements are grouped in the following domains:

- Methodology and Technology Specific Libraries
- Core Language
- Models of Computation and Solvers
- Utilities
- Data classes
- Application Programming Interface (API)

 16

The implementation requirements have been prioritized with High (H), Medium (M)
and Low (L) priority, according to the following definition:

High (H) Essential requirement. Needed as basic infrastructure (foundation)

for the SystemC AMS extensions, to show functionality and its
capabilities

Medium (M) Valuable requirement, but not essential to show basic functionality.
Should be considered in next LRM release (if not covered already)

Low (L) “Nice-to-have” requirement. Not essential as part of the AMS
Standardization and/or could be defined/standardized elsewhere

6.1 Methodology and Technology Specific Libraries

6.1.1 Refinement methodology

6.1.1.1 Language construct supporting a design refinement methodology (H)
The language constructs and modeling formalism introduced by the SystemC AMS
extensions should facilitate a design refinement methodology to define AMS behavior
at different levels of design abstraction. The level of design refinement depends on the
use case in which the models are used. A top-down design and bottom-up verification
methodology should be supported where mixed abstraction-level modeling is facilitated.

6.1.2 Basic communication library

6.1.2.1 open source library of non-differentiating system models and IP to
facilitate the creation of test-benches and verification suites (L)

Library of higher level models with algorithmic or procedural descriptions, to develop
reference architectures and/or test-benches at system level. Examples of such models
are down-converters, filters, modulators and demodulators, etc.

6.1.3 Basic primitives library
Library of predefined primitive modules as foundation to create a variety of applications
or user-specific models. The basic set of models should offer access to all required
computational techniques available in the implementation.

6.1.3.1 Resistors, inductors, capacitors (H)
Predefined models of electrical linear primitives for macro modeling to be able to
construct simple electrical networks for filters, loads, matching circuits, etc.

6.1.3.2 Stimulus generators, voltage sources, current sinks, etc (H)
Predefined models for sources and sinks to create analog signals.

6.1.3.3 Basic non-electrical types and interfaces, for example, for actuator
and sensor modeling (M)

Predefined models of non-electrical primitives see also requirement 6.1.4.1.

6.1.3.4 Ability to describe linear dynamic functions and non-linear static
functions (H)

 17

Define model semantics and predefined models for embedded linear dynamic functions
which can be instantiated in a time- and frequency-domain simulation. Support of linear
transfer functions and state-space functions should be solved in the continuous-time
domain. Non-linear static functions should be supported for time-domain simulations.

6.1.3.5 Non-linear dynamic models, e.g. diode, simple bipolar model, simple
MOS model (M)

Predefined models of electrical non-linear primitives for macro modeling to be able to
construct simple electrical networks including only the dominant non-linear
component(s), e.g. the final output stage in a power amplifier.

6.1.3.6 Consistent naming conventions with implementation languages (e.g.
Verilog-AMS, VHDL-AMS) – where applicable (M)

Use same naming conventions as used in other behavioral languages to improve
readability of netlists and circuits for users familiar with these other languages.

6.1.3.7 Basic pre- and post-processing library (L)
Library of higher level models with algorithmic or procedural descriptions, for signals
generation and signal analysis. Will be used in combination with the architecture design
and test-bench models defined in requirement 6.1.2.1.

6.1.3.8 Performance monitors (e.g. EVM, BER) (L)
Library of higher level models with algorithmic or procedural descriptions for signal
analysis such as Bit-Error-Rate (BER) or Error-Vector Magnitude (EVM)

6.1.3.9 Post-processing functions, i.e. FFT (L)
Library of higher level models with algorithmic or procedural descriptions for special
computational tasks, like Fast Fourier Transforms (FFT).

6.1.3.10 Output (pseudo) real-time simulation values (M)
Output simulation results using streams, which can be picked-up by other software for
immediate processing or analysis. Example is to output (stream) simulation results
directly to vector signal analyzer software [1, 2].

6.1.4 Extend the domain of applicability
To support heterogeneous system design to a full extend, extensions to non-electrical
domains is essential. Also simulation should be possible in time and frequency domain.

6.1.4.1 Electromechanical, fluidic, thermal domain behavior (M)
Examples of domain which need to be supported to include components like MEMS,
and temperature sensors.

6.1.4.2 Allow time- and frequency-domain behavior (H)
Support both time- and frequency descriptions for all Models of Computation.

 18

6.2 Core Language

6.2.1 Single model definition for different simulation domains
To support both discrete-time and continuous-time descriptions, different Models of
Computation are introduced. Objective is to have unified language constructs and views
for the user/application which are detached from the underlying execution semantics.

6.2.1.1 Model of Computation independent assignments and methods (M)
Avoid different assignments and methods for the predefined primitives developed for
each model of computation.

6.2.1.2 Introduce common ports and nodes or channels for conservative and
non-conservative elements (M)

The concept of ports and channels should be applied for all primitives developed for
each Models of Computation and should be the same where applicable.

6.2.2 Modules, ports and channels to represent hierarchy

6.2.2.1 IEEE Std 1666-2005 compliant modules should be suitable for use in
a SystemC AMS extensions environment without modifications. (H)

Module hierarchy in an AMS application should use concepts as defined in IEEE Std
1666-2005.

6.2.2.2 Define converter modules/ports between different Models of
Computation (H)

In order to connect modules defined in/for different Models of Computation, connect
modules or ports should be introduced to facilitate an easy way to link these
computational domains together.

6.2.3 Synchronization mechanisms

6.2.3.1 Support of asynchronous events (M)
In order to support flexible interaction (in time) between threads, such as asynchronous
events, a modeling approach based on fixed time steps has the disadvantage that these
asynchronous events are ‘missed’ . An asynchronous event mechanism should be
introduced, but also requires the implementation of variable time stepping (see
requirement 6.2.3.2)

6.2.3.2 Variable time steps (M)
Introduce variable time steps for the synchronization between the discrete-time and
continuous-time analog solvers.

6.2.3.3 Usage of channels as communication and synchronization
mechanism (H)

In line with the foundations of SystemC, the use of channels as communication /
synchronization mechanism is strongly recommended.

 19

6.2.3.4 Pass values from the discrete-event domain to the analog Models of
Computation (H)

The digital control must send information to the continuous solver, for instance, to
switch equations: the power down signal is usually driven by a digital control, and the
analog solver must take it into account.

6.2.3.5 Pass analog “ events” to the discrete-event domain (H)
The analog solver must create events not yet in the event queue of the digital (discrete-
event) simulator: for instance, a threshold crossing can create a "digital" event, to be
taken into account by the discrete-event simulator.

6.3 Models of Computation and Solvers

6.3.1 Non-conservative domain

6.3.1.1 Support data/signal flow descriptions (H)
Dataflow and Signal flow Models of Computations should be supported.

6.3.1.2 Support static scheduling for efficient algorithm design (H)
Introduce principles of Synchronous Data Flow MoC as this modeling paradigm is often
used for algorithm/DSP design.

6.3.1.3 Support for equivalent baseband and pass-band models (M)
To gain simulation efficiency, wide-band, high-frequency models could be abstracted to
narrow-band, low-frequency models or equivalent baseband or pass-band models.
Different concepts are available for this [3]. The basic primitives introduced by the
SystemC AMS extensions should allow this type of modeling.

6.3.1.4 Support dynamic changing behavior (M)
Support for dynamically changing behavior like changed data/sample rates of adaptive
and reconfigurable systems.

6.3.1.5 Support multi-rate simulations (H)
Allow multiple sampling domains and data rates, even combining them into a single
stream.

6.3.2 Conservative domain

6.3.2.1 Ability to embed dedicated solvers (M)
The SystemC AMS extensions should allow user-defined extensions of dedicated
solvers (see also API, section 5.3).

6.3.2.2 Solver for linear switching networks (H)
Introduce solver dedicated for linear switching networks.

6.3.2.3 Solver for strongly non-linear and stiff DAE systems (M)
Introduce solver dedicated for strongly non-linear and stiff DAE systems.

 20

6.3.2.4 Large-signal non-linear analog/RF analysis (M)
Support of large-signal non-linear multi-tone analysis.

6.3.2.5 Small-signal non-linear analog/RF analysis (M)
Support of small-signal non-linear multi-tone analysis.

6.4 Utilities

6.4.1 File formats and variables

6.4.1.1 Support table-based models (look-up tables) (M)
Use of multidimensional tables with interpolation (e.g. AM/AM, AM/PM curve of
power amplifiers).

6.4.1.2 Read/Write to Standard Formats (M)
Support to read/write to multidimensional tables and S-parameter files (e.g. Touchstone
format).

6.4.1.3 Constants and Variables (M)
Include methods to accommodate shared variables and constants.

6.4.2 Tracing and Report Handling

6.4.2.1 Tracing of AMS signals (H)
Tracing functionality similar to SystemC, to trace AMS/RF electrical and non-electrical
signals.

6.4.2.2 Support AMS file format (H)
Creation of standard file formats which can be easily read by post-processing tools and
viewers used by the AMS community (e.g. Matlab, VCD format, comma-delimited-file,
etc).

6.5 Data Classes

6.5.1 Data Types

6.5.1.1 Support standard (SystemC) data types (H)
Support standard data types such as integer, floating point, etc.

6.5.1.2 Introduce analog-specific data types (H)
Introduce complex numbers.

6.5.1.3 Introduce (efficient) data processing methods (H)
Support vector and matrix processing (arbitrary type and size).

6.5.1.4 Data Units (M)
Usage of the International System of Units (SI).

 21

6.6 Application Programming Interface (API)

6.6.1 Compatibility

6.6.1.1 Compatible with IEEE Std 1666-2005 (M)
The API definition should be defined in terms of class definitions, in a similar way as
done for SystemC (part of the Language Reference Manual).

6.6.2 Co-simulation

6.6.2.1 Permit co-simulation environment for multi-domain simulation (M)
Ability to link the SystemC AMS extensions to other simulation frameworks, or use the
SystemC AMS extensions as simulation backplane by incorporating other computation
processes.

6.6.2.2 Easy plug-in for analog solvers (M)
Should provide a simple mechanism to allow analog solvers to be modified or replaced.

The comparison table in Annex A in this document gives an overview of all the
requirements including their priorities. In addition, it shows what is covered in the
AMS 1.0 standard and what is defined in the AMS Language Reference manual.
Some requirements are labeled with Not Applicable (N/A); in this case the requirement
is not considered as essential part of the standardization and AMS LRM definition itself.

 22

Requirements summary
Acronyms and Terms...6
Part I: Motivation, applications and use cases..7

1 Why include AMS and/or RF in ESL design...7
2 Heterogeneous System IC Design..7
3 Application domains..9
4 Use Cases and Use models ..11

4.1 Executable specification...11
4.2 Architecture exploration...11
4.3 Integration validation ...11
4.4 Virtual prototyping...11

5 Positioning of an environment for the SystemC AMS extensions...12
5.1 Design and simulation environment ...13

5.1.1 Design environment requirements...13
5.1.2 Simulation Environment Requirements...14

Part II: AMS Implementation requirements...15
6 Implementation requirements ..15

6.1 Methodology and Technology Specific Libraries..16
6.1.1 Refinement methodology...16
6.1.2 Basic communication library...16
6.1.3 Basic primitives library ...16
6.1.4 Extend the domain of applicability..17

6.2 Core Language...18
6.2.1 Single model definition for different simulation domains...18
6.2.2 Modules, ports and channels to represent hierarchy..18
6.2.3 Synchronization mechanisms..18

6.3 Models of Computation and Solvers..19
6.3.1 Non-conservative domain..19
6.3.2 Conservative domain...19

6.4 Utilities...20
6.4.1 File formats and variables..20
6.4.2 Tracing and Report Handling ..20

6.5 Data Classes...20
6.5.1 Data Types...20

6.6 Application Programming Interface (API) ...21
6.6.1 Compatibility ...21
6.6.2 Co-simulation ..21

Requirements summary..22
References..23
Annex A Comparison: requirements specification and AMS 1.0 standard...24

 23

 References

[1] Agilent Technologies, 89600 Series Vector Signal Analysis Software,
www.agilent.com/find/89600

[2] Rohde & Schwarz, R&S®GX430 PC-Based Signal Analysis and Signal
Processing, http://www2.rohde-schwarz.com/en/products/radiomonitoring/
product_categories/Signal_Analysis/GX430.html

[3] Gerd Vandersteen, Piet Wambacq, Stephane Donnay, Yves Rolain and
Wolfgang Eberle "FAST - an efficient high-level dataflow simulator of mixed-
signal front-ends of digital telecom transceivers," chapter in book “Low-power
design techniques and CAD tools for analog and RF integrated circuits” , edited
by Piet Wambacq, Georges Gielen and John Gerrits, Kluwer Academic
Publishers, 2001.

 24

Annex A Comparison: requirements specification and AMS 1.0 standard

The table below gives an overview of the requirement specification and the definition as part of the SystemC AMS Language Reference Manual.

Req
ID

Domain Sub-domain Requirement Prio

AMS 1.0
standard

Description

6.1.1.1 Methodology Language construct supporting a design
refinement methodology for different use cases

H � Discrete-time and continuous-time abstractions
defined supporting conservative and non-
conservative system description. Namespaces
defined for the different MoCs.

6.1.2.1 Basic
communication
library

Open source library of non-differentiating
system models and IP to facilitate the creation
of test-benches and verification suites

L N/A User-defined library can be created using TDF
primitive modules. Not necessarily a
standardization topic.

6.1.3.1 Resistors, inductors, capacitors H � Electrical primitives available in ELN

6.1.3.2 Stimulus generators, voltage sources, current
sinks, etc

H � Available as predefined primitives for ELN and
LSF. Advanced stimuli can be made with TDF
primitives

6.1.3.3 Basic non-electrical types and interfaces, for
example, for actuator and sensor modeling

M � Non-electrical physical domains not part of
AMS 1.0 standard (see also 6.1.4.1)

6.1.3.4 Ability to describe linear dynamic functions and
non-linear static functions

H � Linear transfer functions supported in TDF and
LSF.

6.1.3.5 Non-linear dynamic models, e.g. diode, simple
bipolar model, simple MOS model

M � Non-linear solver not included in version 1.0.
Static non-linear behavior available in TDF

6.1.3.6 Consistent naming conventions of primitives
with implementation languages (e.g. Verilog-
AMS, VHDL-AMS) – where applicable

M � Aligned with Verilog(-AMS), VHDL(-AMS),
Spice and SystemC naming conventions

6.1.3.7 Basic pre- and post-processing library L N/A User-defined library can be created using TDF
primitive modules. Not necessarily a
standardization topic.

6.1.3.8

Methodology
and
Technology
Specific
Libraries

Basic primitives
library

Performance monitors (e.g. EVM, BER) L N/A User-defined library can be created using TDF
primitive modules. Not necessarily a
standardization topic.

 25

Req
ID

Domain Sub-domain Requirement Prio

AMS 1.0
standard

Description

6.1.3.9 Post-processing functions, i.e. FFT L N/A User-defined library can be created using TDF
primitive modules. Not necessarily a
standardization topic.

6.1.3.10 Output (pseudo) real-time simulation values, M � Streaming of trace files supported (see also
6.4.2.2)

6.1.4.1 Electromechanical, fluidic, thermal domain
behavior

M � Non-electrical physical domains not part of
AMS 1.0 standard (see also 6.1.3.3)

6.1.4.2

Extend the
domain of
applicability Allow time- and frequency-domain behavior H � Time and frequency analysis supported

6.2.1.1 Model of Computation independent
assignments and methods

M � Classes, methods and functions aligned across
the different MoCs using namespaces

6.2.1.2

Single model
definition for
different simu-
lation domains

Introduce common ports and nodes or channels
for conservative and non-conservative elements

M � Ports and channels introduced in different
namespaces

6.2.2.1 IEEE Std 1666-2005 compliant modules should
be suitable for use in a SystemC AMS
extensions environment without modification.

H � IEEE Std 1666-2005 needs no modification.
AMS extensions will rely on hierarchy concepts
defined in IEEE Std 1666-2005.

6.2.2.2

Modules, ports
and channels to
represent
hierarchy Define converter modules/ports between

different Models of Computation
H � Converter modules/ports available to make a

connect between MoCs
6.2.3.1 Support of asynchronous events M � Synchronous synchronization mechanism

implemented. Fall-back to SystemC for
asynchronous event handling

6.2.3.2 Variable time steps M � Fixed time step defined in AMS 1.0 standard

6.2.3.3 Usage of channels as communication and
synchronization mechanism

H � Channels and nodes introduced.
Communication defined by the MoC

6.2.3.4 Pass values from the discrete-event domain to
the analog Models of Computation

H � The value is read at the next sampling time-
point defined by TDF.

6.2.3.5

Core
Language

Synchronization
mechanisms

Pass analog “events” to the discrete-event
domain

H � Note: Analog “events” (zero-crossings,
thresholds) can only reported back to SystemC
at fixed time steps.

6.3.1.1 Support data/signal flow descriptions H � Timed Data flow (TDF) and Linear Signal Flow
(LSF) introduced

6.3.1.2

Models of
Computation
and Solvers

Non-
conservative
domain Support static scheduling for efficient algorithm

design
H � TDF is based on principles of well known

synchronous data flow MoC

 26

Req
ID

Domain Sub-domain Requirement Prio

AMS 1.0
standard

Description

6.3.1.3 Support for equivalent baseband and pass-band
models

M N/A User-defined library for baseband models can
be created using TDF primitive modules.

6.3.1.4 Support dynamic changing behavior M � Static scheduling defined in AMS 1.0 standard.

6.3.1.5 Support multi-rate simulations H � Multi-rate data flow supported.

6.3.2.1 Ability to embed dedicated solvers M � See API definition, 6.6.2.2

6.3.2.2 Solver for linear switching networks H � Linear solver defined

6.3.2.3 Solver for strongly non-linear and stiff DAE
systems

M � No generic non-linear solver for electrical
networks defined in AMS 1.0 standard

6.3.2.4 Large-signal non-linear analog/RF analysis M � No harmonic-balance-like solver defined in
AMS 1.0 standard

6.3.2.5

Conservative
domain

Small-signal non-linear analog/RF analysis M � No non-linear AC solver defined in AMS 1.0
standard

6.4.1.1 Support table-based models (look-up tables) M N/A Use standard C++ capabilities to read/write
from files

6.4.1.2 Read/Write to Standard Formats (e.g.
Touchstone)

M N/A Use standard C++ capabilities to read/write
from files

6.4.1.3

File formats and
variables

Constants and Variables M N/A Standard #include for variables can be used
6.4.2.1 Tracing of AMS signals H � Tracing mechanism defined for multi-rate.

6.4.2.2

Utilities

Tracing and
Report Handling Support AMS file format H � Tabular trace file format defined for VCD and

tabular file format.
6.5.1.1 Support standard (SystemC) data types H � Template classes support standard SystemC

data types
6.5.1.2 Introduce analog-specific data types (complex

numbers)
H � Class implemented for complex numbers

6.5.1.3 Introduce (efficient) data processing methods
(for vectors, matrices)

H � Class implemented for vectors and matrices

6.5.1.4

Data Classes Data Types

Usage of the International System of Units (SI). M N/A Standard #include for variables can be used.
6.6.1.1

Compatibility
Compatible with IEEE Std 1666-2005 M � AMS class library derived from SystemC

classes where possible
6.6.2.1

API

Co-simulation Permit co-simulation environment for multi-
domain simulation

M � No co-simulation API defined in AMS 1.0
standard

 27

Req
ID

Domain Sub-domain Requirement Prio

AMS 1.0
standard

Description

6.6.2.2 Easy plug-in for analog solvers M � No simulation “backplane” defined in AMS 1.0
standard

Legend comparison table

� Can be used in an applications using the SystemC and SystemC AMS extensions and/or defined in AMS LRM

� Can not be used in an application and/or AMS LRM definition missing

N/A Not applicable for AMS Standardization

Priority
H High, essential requirement. Needed as basic infrastructure (foundation) for the SystemC AMS extensions, to show functionality and its capabilities.
M Medium, valuable requirement, but not essential to show basic functionality. Should be considered in next LRM release (if not covered already)
L Low, “nice-to-have” requirement. Not essential as part of the AMS Standardization and/or could be defined/standardized elsewhere

