SYSTEM(C' &8

OSCI TLM-2.0

The Transaction Level Modeling standard of the
Open SystemC Initiative (OSCI)

SYSTEM(C' &8

OSCI TLM-2.0

Software version: TLM-2.0.1
Document version: ja8
This presentation authored by: John Aynsley, Doulos

Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved

OSCI TLM-2.0

CONTENTS

 Introduction
 Transport Interfaces

(1 DMI and Debug Interfaces
1 Sockets

d The Generic Payload
 The Base Protocol

1 Analysis Ports

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

OSCI TLM-2.0

INTRODUCTION

[Transaction Level Modeling 101
O OSCI TLM-1 and TLM-2

O Coding Styles

O Structure of the TLM-2.0.1 Kit

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Transaction Level Modeling 101

Functional
Model

RTL

Pin accurate,
cycle accurate

Transaction level -
function call

write (address, data)

Functional
Model

Simulate every event 100-10,000 X faster simulation

K estine

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Reasons for Using TLM

Accelerates product release schedule

SVEICY
software

Software development

Fast enough

Architectural modeling

Hardware verification

TLM = golden model

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Typical Use Cases for TLM

= Represents key architectural components of hardware platform
= Architectural exploration, performance modeling

= Software execution on virtual model of hardware platform

= Golden model for hardware functional verification

= Available before RTL Early!

= Simulates much faster than RTL Fastl

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

OSCI TLM Development

Apr 2005 @ Dec 2006 Jun 2008
A
*TLM-1.0 *TLM 2.0-draft-2 TLM-=2.0
* TLM-2. *TLM-2.0.1
*put, get and transport * TLM-2.0-draft -1 *nb_transport + Unified interfaces + Minor additions
request-response * Generic payload *New payload & and sockets and LRM
interfaces extensions
\. J J J J J

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

TLM-1.0 »> TLM-2.0

= TLM-2.0 is the new standard for interoperability hetween memory

mapped bus models

— Incompatible with TLM-2.0-draft1 and TLM-2.0-draft2

= TLM-1.0 is not deprecated (put, get, nb_put, nb_get, transport)
* TLM-1.0 is included within TLM-2.0

— Migration path from TLM-1.0 to TLM-2.0 (see examples)

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

TLM-2 Requirements

* Transaction-level memory-mapped bus modeling

= Register accurate, functionally complete

= Fast enough to boot software O/S in seconds Speed
= | oosely-timed and approximately-timed modeling

= Interoperable APl for memory-mapped bus modeling

= Generic payload and extension mechanism

= Avoid adapters where possible Interoperability

m- c

See TLM_2 0 requirements.pdf

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Use Cases, Coding Styles and Mechanisms

Use cases

Software Software Architectural Hardware
development performance analysis verification

TLM-2 Coding styles

Loosely-timed

Approximately-timed

Blocking Generic Non-blocking
interface payload interface
SYSTEMC

Mechanisms

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Coding Styles

= Loosely-timed
— Only sufficient timing detail to boot O/S and run multi-core systems
— Processes can run ahead of simulation time (temporal decoupling)
— Each transaction has 2 timing points: begin and end
— Uses direct memory interface (DMI)

= Approximately-timed
— aka cycle-approximate or cycle-count-accurate
— Sufficient for architectural exploration
— Processes run in lock-step with simulation time
— Each transaction has 4 timing points (extensible)

= Guidelines only — not definitive

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Loosely-timed

Quantum Quantum Quantum Quantum

Process 1 I —* —

Process 2 I : I : DN —

E v : :
Process 3 I : D : D .

Each process runs ahead up to quantum boundary
sc_time_stamp() advances in multiples of the quantum

Deterministic communication requires explicit synchronization

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Approximately-timed

0 10 20 30 40 >0
= u -
Process 1 Annotated delays _«
\ —
Process 2 .\
Process 3 - .

Each process is synchronized with SystemC scheduler
Delays can be accurate or approximate

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

The TLM 2.0 Classes
Utilities:

Interoperability layer for bus modeling Convenience sockets

Generic payload m

Initiator and target sockets

Payload event queues
Quantum keeper
Instance-specific extn

TLM-1 standard TLM-2 core interfaces: _
) . Analysis ports
Blocking transport interface
Non-blocking transport interface
Direct memory interface

Debug transport interface Analysis interface

IEEE 1666™ SystemC

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Interoperability Layer

1. Core interfaces
and sockets

d LU
2. Generic payload 3. Base protocol
Command >
BEGIN_REQ
Address <
Data END_REQ
Byte enables <
Response status BEGIN_RESP
Extensions >
END_RESP

Maximal interoperability for memory-mapped bus models

K estine

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Utilities

= tim_utils
— Convenience sockets
— Payload event queues
— Quantum keeper
— Instance-specific extensions

= Productivity
= Shortened learning curve
= Consistent coding style

= Not part of the interoperability layer - write your own?

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Directory Structure

include/tim

tim_h
tim_2 interfaces
tim_generic_payload
tim_sockets
tim_quantum

tim_1
tim_req_rsp
tim_analysis

tim_utils

docs
doxygen

examples

unit_test

TLM-2 interoperability classes

TLM-2 core interfaces
TLM-2 generic payload

TLM-2 initiator and target sockets

TLM-2 global quantum

TLM-1.0 legacy

Analysis interface, port, fifo

TLM-2 utilities

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

m- c

OSCI TLM-2.0

TRANSPORT INTERFACES

U Initiators and Targets

L Blocking Transport Interface

L Timing Annotation and the Quantum Keeper

L Non-blocking Transport Interface

L Timing Annotation and the Payload Event Queue

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Initiators and Targets

Initiator Target Initiator Target
socket socket socket socket
Forward Forward
path Crconnce path
> ompone > arge
() 0 G
Backward Backward
path path

Transaction
object

References to a single transaction object are passed along the forward and backward paths

K estine

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

TLM-2 Connectivity

: Interconnect }

\/

arge Target/
ato Initiator

@c*

Transaction memory management needed

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Convergent Paths

K estine

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Blocking versus Non-blocking Transport

= Blocking transport interface

— Includes timing annotation
— Typically used with loosely-timed coding style
— Forward path only

= Non-blocking transport interface
— Includes timing annotation and transaction phases
— Typically used with approximately-timed coding style
— Called on forward and backward paths

= Share the same transaction type for interoperability

= Unified interface and sockets - can be mixed

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

m- c

TLM-2 Core Interfaces - Transport

tim_blocking_transport_if

void b_transport(TRANS& , sc time&) ;

tim_fw_nonblocking_transport_if

tim_sync_enum nb_transport_fw(TRANS& , PHASE& , sc_time&);

tim_bw_nonblocking_transport_if

tim_sync_enum nb_transport_bw(TRANS& , PHASE& , sc_time&);

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

TLM-2 Core Interfaces - DMI and Debug

tim_fw_direct_mem _if

bool get_direct_mem_ptr(TRANS& trans , tim_dmi& dmi_data) ;

tim_bw_direct_mem_if

void invalidate_direct_ mem_ptr(sc_dt::uint64 start range,
sc_dt::uint64 end range) ;

tim_transport_dbg_if

unsigned int transport_dbg(TRANS& trans) ;

May all use the generic payload transaction type

SYSTEMC

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Blocking Transport

Transaction type

!

template < typename TRANS = tlm_generic_payload >

class tim_blocking_transport_if : public virtual sc_core::sc_interface {
public:

virtual void b_transport (TRANS& trans , sc_core::sc_time&t) = 0;

I I

Transaction object Timing annotation

X

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Blocking Transport

Initiator

Simulation time = 100ns

Call

b_transport(t, Ons)

<

Call

b_transport(t, Ons)

b_transport(t, Ons)

Simulation time = 140ns

<

b_transport(t, Ons)

Initiator is blocked until return from b_transport

Target
-
Return
>
wait(40ns)
Return

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

@- c

Timing Annotation

virtual void b_transport (TRANS& trans , sc_core::sc_time& delay)
{

Il Behave as if transaction received at sc_time_stamp() + delay

delay = delay + latency;

}

b_transport(transaction, delay);

Il Behave as if transaction received at sc_time_stamp() + delay

= Recipient may
— Execute transactions immediately, out-of-order — Loosely-timed
— Schedule transactions to execution at proper time — Approx-timed
— Pass on the transaction with timing annotation

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Temporal Decoupling

Initiator Target

Simulation time = 100ns

Local ti. ff
ocal time oftset Call b_transport(t, Ons)
P
+5ns <
b_transport(t, 5ns) Return
+20ns Call b_transport(t, 20ns) .
+25ns <
b_transport(t, 25ns) Return
+30ns Call b_transport(t, 30ns) N
Simulation time = 140ns wait(40ns)
+5ns <
b_transport(t, 5ns) Return

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

The Time Quantum

Initiator Target

Simulation time = 1us < Quantum = 1us)

Local time offset

b transport(t, 950ns
+950ns Call _transport() S
+970ns <
b_transport(t, 970ns) Return
+990ns Call b_transport(t, 990ns) N
+1010ns <
b_transport(t, 1010ns) Return
wait(1010ns)
Simulation time = 2010ns
+0ns Call b_transport(t, Ons) y

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

The Quantum Keeper (tim_quantumkeeper)

= Quantum is user-configurable debug

= Processes can check local time against quantum

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Quantum Keeper Example

struct Initiator: sc_module

{
tim_utils::simple_initiator _socket<Initiator> init_socket;
tim_utils::tim_quantumkeeper m_qk;

SC_CTOR(Initiator) : init_socket("init_socket") {

m_gk.set_global_quantum(sc_time(1, SC_US)),
m_gk.reset();

}

void thread() { ...
for (inti=0;i < RUN_LENGTH; i +=4){

delay = m_qgk.get_local_time() ;
init_socket->b_transport(trans, delay);
m_qgk.set(delay);
m_gk.inc(sc_time(100, SC_NS));
if (m_qgk.need_sync())

m_qgk.sync();

The quantum keeper

Replace the global quantum
Recalculate the local quantum

Time consumed by transport
Further time consumed by initiator

Check local time against quantum
and sync if necessary

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Non-blocking Transport

enum tim_sync_enum { TLM_ACCEPTED, TLM_UPDATED, TLM_COMPLETED }:

template < typename TRANS

= tlm_generic_payload,
typename PHASE =

tim_phase>
class tim_fw_nonblocking_transport_if : public virtual sc_core::sc_interface {
public:

virtual tlm_sync_enum nb_transport(TRANS& trans,

PHASE& phase,
sc_core::sc_time& t) = 0;

Trans, phase and time arguments set by caller and modified by callee

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

tim_sync_enum

= TLM_ACCEPTED

— Transaction, phase and timing arguments unmodified (ignored) on return
— Target may respond later (depending on protocol)

= TLM_UPDATED

— Transaction, phase and timing arguments updated (used) on return
— Target has advanced the protocol state machine to the next state

= TLM_COMPLETED

— Transaction, phase and timing arguments updated (used) on return
— Target has advanced the protocol state machine straight to the final phase

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Notation for Message Sequence Charts

Simulation time = 5us = sc_time_stamp()

Local time
For temporal decoupling, local time is added to

simulation time (explained on slides)

+10ns
+20ns
status = nb_transport (trans, phase, delay) ;
Call -, BEGIN_REQ, Ons Arguments passed to function
< T >
Return
TLM_COMPLETED, BEGIN_RESP, 10ns Values returned from function

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Using the Backward Path

Phase Initiator Target

Simulation time = 100ns

Call -, BEGIN_REQ, Ons
< =
BEGIN_REQ Return TLM ACCEPTED. -. -
Simulation time = 110ns
- END_REQ, Ons Call
< >
END_REQ TLM_ACCEPTED, -, - Return
Simulation time = 120ns
-, BEGIN_RESP, Ons Call
n >
BEGIN_RESP TLM_ACCEPTED, -, - Return
Simulation time = 130ns
Call -, END_RESP, Ons
pl
END_RESP < ot
eturn TLM_ACCEPTED, -, -

Transaction accepted now, caller asked to wait

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Using the Return Path

Phase Initiator Target

Simulation time = 100ns

Call -, BEGIN_REQ, Ons
< >
BEGIN_REQ Return TLM_UPDATED, END_REQ, 10ns
END_REQ Simulation time = 110ns

Simulation time = 150ns

-, BEGIN_RESP, Ons

>
BEGIN_RESP TLM_UPDATED, END_RESP, 5ns [Xéturm \

END_RESP Simulation time = 155ns

Callee annotates delay to next transition, caller waits

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Early Completion

Phase Initiator Target

Simulation time = 100ns

Call -, BEGIN_REQ, Ons

-

BEGIN_REQ TLM_COMPLETED, -, 10ns [Xéfurmn

END_RESP Simulation time = 110ns

Callee annotates delay to next transition, caller waits

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Timing Annotation

Phase Initiator Target
Simulation time = 100ns
Call -, BEGIN_REQ, 10ns
> >
TLM_ACCEPTED, -, - [xéturn Payload
Event
Queue
BEGIN_REQ Simulation time = 110ns
Simulation time = 125ns
-, END_REQ, 10ns Call
<
>
Payload Return 1 mM_ACCEPTED, -, -
Event
Queue
END_ REQ Simulation time = 135ns

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Payload Event Queue

template <class PAYLOAD>
class peq_with_get : public sc_core::sc_object
{
public:
peq_with_get(const char* name);

void notify(PAYLOADA& trans, sc_core::sc_time&t);
void notify(PAYLOADG& trans);

transaction_type* get_next_transaction();
sc_core::sc_event& get_event();

while (true) {
wait(m_peq.get_event());
while ((trans = m_peqg.get_next_transaction()) != 0) {

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

OSCI TLM-2.0

DMI AND DEBUG INTERFACES

1 Direct Memory Interface
1 Debug Transport Interface

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

DMI and Debug Transport

= Direct Memory Interface
— Gives an initiator a direct pointer to memory in a target, e.g an ISS
— By-passes the sockets and transport calls
— Read or write access by default
— Extensions may permit other kinds of access, e.g. security mode
— Target responsible for invalidating pointer

= Debug Transport Interface

— Gives an initiator debug access to memory in a target
— Delay-free
— Side-effect-free

= May share transactions with transport interface

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Direct Memory Interface

Access requested Access granted

! !

status = get_direct_mem_ptr(transaction, dmi_data);

| tim_fw_direct mem_if |—>

Forward path Forward path
arconne
> > arge
ompone
Backward path Backward path

<—| tim_bw_direct mem_if I

invalidate_direct_mem_ptr(start_range, end_range);

Transport, DMI and debug may all use the generic payload

Interconnect may modify address and invalidated range

mc

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

DMI Transaction and DMI Data

DMI Transaction

Requests read or write access
For a given address
Permits extensions

class tim_dmi

unsigned char* dmi_ptr Direct memory pointer
uint64 dmi_start_address }

. . Region granted for given access type
uint64 dmi_end_address geng J P
dmi_type e dmi_type; Read, write or read/write
sc_time read_latency

: . Latencies to be observed by initiator
sc_time write latency

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

DMI Rules 1

= |nitiator requests DMI from target at a given address

= DMI granted for a particular access type and a particular region

— Target can only grant a single contiguous memory region containing given address
— Target may grant an expanded memory region

— Target may promote READ or WRITE request to READ_WRITE

= |nitiator may assume DMI pointer is valid until invalidated by target

= |nitiator may keep a table of DMI pointers

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

DMI Rules 2

DMI request and invalidation use same routing as regular transactions

The invalidated address range may get expanded by the interconnect

Target may grant DMI to multiple initiators (given multiple requests)

— and a single invalidate may knock out multiple pointers in multiple initiators

Use the Generic Payload DMI hint (described later)

Only makes sense with loosely-timed models

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Debug Transport Interface

Command
ﬁ Address
Data pointer
num_bytes = transport_dbg(transaction); Data length
Extensions
| tim_transport_dbg_if I
Forward path Forward path
> - > adl Jdc
ompone -
Backward path Backward path

Uses forward path only

Interconnect may modify address, target reads or writes data

mc

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

OSCI TLM-2.0

SOCKETS

O Initiator and target sockets
O Simple sockets

O Tagged sockets

O Multi-port sockets

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Initiator and Target Sockets

Initiator Target
socket socket

b_transport ()
nb_transport_fw()

get_direct_mem_ptr()

transport_dbg()

nb_transport_bw() «
invalidate_direct_mem_ptr()

Sockets provide fw and bw paths and group interfaces

mc

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Benefit of Sockets

= Group the transport, DMI and debug transport interfaces
= Bind forward and backward paths with a single call
= Strong connection checking

= Have a bus width parameter

= Using core interfaces without sockets is not recommended

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Sockets and Transaction Types

= All interfaces templated on transaction type

= Use the generic payload and base protocol for interoperability

— Use with transport, DMI and debug transport

— Supports extensions

— Even supports extended commands and phases

— Ignorable extensions allow interoperability

— Mechanism to disallow socket binding for non-ignorable extensions

— Described later

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Standard Socket Classes

template < unsigned int BUSWIDTH = 32,

typename TYPES = tim_base_protocol_types,
int N =1,
sc_core::sc_port_policy POL =sc_core::SC_ONE_OR_MORE_BOUND>

class tIm_initiator_socket

class tim_target_socket

Part of the interoperability layer

Initiator socket must be bound to an object that implements entire backward interface

Target socket must be bound to an object that implements entire forward interface

Can mix blocking and non-blocking calls — target must support both together

m- c

Allow hierarchical binding

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Socket Binding Example 1

struct Initiator: sc_module, tim::tim_bw_transport_if<> Combined interface required by socket

{

tim::tim_initiator_socket<> init_socket; Protocol type defaults to base protocol

SC_CTOR(Initiator) : init_socket("init_socket") {
SC_THREAD(thread);
init_socket.bind(*this); Initiator socket bound to initiator itself

}

void thread() { ...
init_socket->b_transport(trans, delay);
init_socket->nb_transport_fw(trans, phase, delay);
init_socket->get _direct_ mem_ptr(trans, dmi_data);
init_socket->transport_dbg(trans);

}

Calls on forward path

virtual tlm::tim_sync_enum nb_transport bw(...) {... }
virtual void invalidate_direct mem ptr(...){...} Methods for backward path

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Socket Binding Example 2

struct Target: sc_module, tim::tim_fw_transport_if<> Combined interface required by socket

{

tim::tim_target_socket<> targ socket; Protocol type default to base protocol

SC_CTOR(Target) : targ_socket("targ_socket") {
targ_socket.bind(*this); Target socket bound to target itself

}

virual void b_transport(...) { ... }
virtual tim::tlm_sync_enum nb_transport fw(...){... }

virtual bool get_direct_mem_ptr(...) { ... } Methods for forward path
virtual unsigned int transport_dbg(...) { ... }

I3

SC_MODULE(Top) {
Initiator *init;

Target *targ;
SC_CTOR(Top) {
init = new Initiator("init");
targ = new Target("targ");
init->init_socket.bind(targ->targ_socket); Bind initiator socket to target socket

1
@- cr

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Convenience Sockets

= The “simple” sockets

= simple_initiator_socket and simple_target_socket
= |n namespace tlm_utils
= Derived from tim_initiator_socket and tlm_target_socket

= “simple” because they are simple to use
= Do not bind sockets to objects (implementations)
= Instead, register methods with each socket
= Do not allow hierarchical binding

= Not obliged to register both b_transport and nb_transport

= Automatic conversion (assumes base protocol)
= Variant with no conversion - passthrough_target_socket

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Simple Socket Example

struct Interconnect : sc_module

{

tim_utils::simple_target_socket<Interconnect> targ socket;
tim_utils::simple_initiator_socket<Interconnect> init_socket;

SC_CTOR(Interconnect) : targ_socket("targ_socket"), init_socket("init_socket")

{
targ_socket.register_nb_transport_fw(this, &Interconnect::nb_transport_fw);
targ_socket.register_b_transport(this, &Interconnect::b_transport);
targ_socket.register_get_direct_mem_ptr(this, &Interconnect::get_direct_mem_ptr);
targ_socket.register_transport_dbg(this, &Interconnect::transport_dbg);

init_socket.register_nb_transport_bw(this, &Interconnect::nb_transport_bw);
init_socket.register_invalidate_direct_mem_ptr(

this, &lInterconnect::invalidate direct_ mem_ptr);
}

virtual void b_transport(...);

virtual tim::tlm_sync_enum nb_transport_fw(...);
virtual bool get_direct_ mem_ptr(...);

virtual unsigned int transport_dbg(...);

virtual tim::tlm_sync_enum nb_transport_bw(...);
virtual void invalidate _direct_ mem_ptr(...);

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Tagged Simple Sockets

simple_target_socket_tagged simple_initiator_socket_tagged
J/ A N A A\
1 1

b_transport(id, trans, delay);

K estine

Distinguish origin of incoming transactions using socket id

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Tagged Simple Socket Example

#include "tim_utils/simple_initiator_socket.h"
#include "tim_utils/simple_target socket.h"

template<unsigned int N_INITIATORS, unsigned int N_TARGETS>
struct Bus: sc_module

{
tim_utils::simple_target_socket_tagged<Bus>* targ socket [N_INITIATORS];
tim_utils::simple_initiator_socket_tagged<Bus>* init socket [N _TARGETS];

SC_CTOR(Bus) {
for (unsigned intid = 0; i < N_INITIATORS; i++) {
targ_socket[id] = new tim_utils::simple_target _socket tagged<Bus>(ixt);

targ_socket[id]->register_b_transport this, &Bus::b_transport, id);

virtual void b_transport(int id, tim::tim_generic_payload& trans, sc_time& delay);

y

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Many-to-many Binding

tim_initiator_socket tim_target _socket

l l

Initiator E

Initiator E

init_socket[0]->b_transport(...) target socket[0]->nb_transport_bw(...)
init_socket[1]->b_transport(...) target _socket[1]->nb_transport_bw(...)

= Multi-ports — can bind many-to-many, but incoming calls are anonymous

@c*

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Multi-port Convenience Sockets

= multi_passthrough_initiator_socket

= multi_passthrough_target_socket

= Many-to-many socket bindings

Method calls tagged with multi-port index value

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Socket Summary

Register Multi- b <->nb Tagged?
callbacks? ports’? conversion?

tim_initiator_socket

tim_target_socket no yes no no
simple_initiator_socket yes no - no
simple_initiator_socket_tagged yes no - yes
simple_target_socket yes no yes no
simple_target_socket_tagged yes no yes yes
passthrough_target_socket yes no no no
passthrough_target_socket_tagged yes no no yes
multi_passthrough_initiator_socket yes yes - yes
multi_passthrough_target_socket yes yes no yes

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

OSCI TLM-2.0

THE GENERIC PAYLOAD

O Attributes

L Memory management
J Response status

O Endianness
 Extensions

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

The Generic Payload

= Typical attributes of memory-mapped busses

— command, address, data, byte enables, single word transfers,
burst transfers, streaming, response status

= Off-the-shelf general purpose payload
— for abstract bus modeling
— ignorable extensions allow full interoperability

= Used to model specific bus protocols
— mandatory static extensions
— compile-time type checking to avoid incompatibility
— low implementation cost when bridging protocols

Specific protocols can use the same generic payload machinery

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Generic Payload Attributes

Attibute | Type____| Modifiable?

Command tlm_command No

Address uinto64 Interconnect only

Data pointer unsigned char* No (array — yes) Array owned by

_ _ initiator

Data length unsigned int No

Byte enable pointer unsigned char* No (array — yes) Array owned by
itiat

Byte enable length unsigned int No arer

Streaming width unsigned int No

DMI hint bool Yes Try DMI !

Response status tim_response_status Target only

Extensions (tim_extension_base*)[] Yes Consider memory
management

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

class tim_generic_payload

class tim_generic_payload {
public:

/I Constructors, memory management
tim_generic_payload () ;
tim_generic_payload(tlim_mm_interface& mm) ;
virtual ~tlm_generic_payload ();

void reset();

void set mm(tlm_mm_interface® mm);
bool has_mm();

void acquire();

void release();

int get_ref count();

Not a template

Construct & set mm
Frees all extensions

Frees mm’d extensions

mm is optional

Incr reference count
Decr reference count, 0 => free trans

void deep_copy_from(const tlm_generic_payload& other);

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Memory Management Rules

b_transport - memory managed by initiator, or reference counting (set_mm)

nb_transport - reference counting only

= Reference counting requires heap allocation

= Transaction automatically freed when reference count ==

= free() can be overridden in memory manager for transactions
= free() can be overridden for extensions

When b_transport calls nb_transport, must add reference counting

= Can only return when reference count ==

b_transport can check for reference counting, or assume it could be present

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Command, Address and Data

enum tim_command {

TLM_READ_COMMAND, Copy from target to data array
TLM_ WRITE_COMMAND, Copy from data array to target
TLM_IGNORE_COMMAND Neither, but may use extensions

I3

tim_command get_ command() const;

void set_ command(const tim_command command) ;

sc_dt::uint64 get_address() const;

void set_address(const sc_dt::uint64 address);

unsigned char* get _data_ptr() const; Data array owned by initiator

void set _data_ptr(unsigned char* data);

unsigned int get_data_length() const; Number of bytes in data array

void set_data_length(const unsigned int length);

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Response Status

TLM_OK_RESPONSE Successful

TLM_INCOMPLETE_RESPONSE Transaction not delivered to target. (Default)
TLM_ADDRESS_ERROR_RESPONSE Unable to act on address
TLM_COMMAND_ERROR_RESPONSE Unable to execute command
TLM_BURST_ERROR_RESPONSE Unable to act on data length or streaming width

TLM_BYTE_ENABLE_ERROR_RESPONSE Unable to act on byte enable
TLM_GENERIC_ERROR_RESPONSE Any other error

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

The Standard Error Response

= A target shall either
— Execute the command and set TLM_OK_RESPONSE

— Set the response status attribute to an error response

— Call the SystemC report handler and set TLM_OK_RESPONSE

= Many corner cases
— e.g. a target that ignores the data when executing a write — OK
— e.g. a simulation monitor that logs out-of-range addresses — OK
— e.g. a target that cannot support byte enables - ERROR

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Generic Payload Example 1

void thread_process() { // The initiator
tim::tim_generic_payload trans; Would usually pool transactions
sc_time delay = SC_ZERO_TIME;

trans.set_command(tim::TLM_WRITE_COMMAND);
trans.set_data_length(4);
trans.set_byte_enable_ptr(0);
trans.set_streaming_width(4);

for (inti=0;i<RUN _LENGTH;i+=4){
int word =1i;
trans.set_address(i);

trans.set_data_ptr((unsigned char*)(&word));
trans.set_response_status(tim::TLM_INCOMPLETE RESPONSE);

init_socket->b_transport(trans, delay);

if (trans.get_response_status() <=0)
SC_REPORT_ERROR("TLMZ2", trans.get_response_string().c_str());

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Generic Payload Example 2

virtual void b_transport(// The target
tim::tim_generic_payload& trans, sc_core::sc_time& t) {

tim::tim_command cmd = trans.get_command();

sc_dt::uint64 adr =trans.get_address();

unsigned char* ptr =trans.get_data_ptr();

unsigned int len = trans.get_data_length();

unsigned char* byt =trans.get_byte_enable_ptr();

unsigned int wid = trans.get_streaming_width();

if (adr+len > m_length) { Check for storage overflow
trans.set_response_status(tim::TLM_ADDRESS ERROR_RESPONSE);
return;

}

if (byt) { Unable to support byte enable
trans.set_response_status(tim::TLM_BYTE ENABLE ERROR_RESPONSE);
return;

}

if (wid I= 0 && wid < len) { Unable to support streaming
trans.set_response_status(tim::TLM_BURST ERROR_RESPONSE);
return;

}

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Generic Payload Example 3

virtual void b_transport(// The target
tim::tlm_generic_payload& trans, sc_core::sc_time&t) {
lf(cmd == tim::TLM_WRITE_COMMAND) Execute command
memcpy(&m_storage[adr], ptr, len);
else if (cmd == tim::TLM_READ_COMMAND)
memcpy(ptr, &m_storage[adr], len);

trans.set_response_status(tim::TLM_OK RESPONSE); Successful completion
}

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Byte Enables and Streaming

uint64 unsigned int unsigned char* unsigned char*
address index data byte_enable
A
f A\
0xF10 0xF10 2to LSB off | T
o | 1 © 0 s
= 2 _g Oxff =3
)
w3 MSB E‘ ________ 7 0
0xF14 0xF10 m 4 LSB o 5
5 g :
6 o _ICB
7 MSB J a
® >
v v
N N
,\&. . \8,&
QD QD
O O
S S 1-enable-per-byte #define TLM_BYTE_DISABLED 0x0
(;&(@ 9‘66 Byte enables applied repeatedly #define TLM_BYTE_ENABLED Oxff

Data interpreted using BUSWIDTH
Streaming width > 0 => wrap address

m- c

TLM-2.0

Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Byte Enable Example 1

// The initiator

void thread_process() {
tim::tim_generic_payload trans;
sc_time delay;

static word_t byte_enable_mask = 0x0000fffful; Uses host-endianness MSB..LSB

trans.set_byte_enable_ptr(
reinterpret_cast<unsigned char*>(&byte _enable _mask));

trans.set_byte_enable_length(4);

trans.set_command(tim::TLM_WRITE_COMMAND);
trans.set_data length(4);

for (inti=0;i <RUN_LENGTH;i+=4){
trans.set_address(i);
trans.set_data_ ptr((unsigned char*)(&word));

init_socket->b_transport(trans, delay);

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

m- c

Byte Enable Example 2

virtual void b_transport(tim::tlm_generic_payload& trans, sc_core::sc_time& t) // The target
{ ...
unsigned char* byt =trans.get_byte enable_ptr();

unsigned int bel =trans.get_byte enable_length();

if (cmd == tim::TLM_WRITE_COMMAND) {
if (byt) {
for (unsigned inti=0; i <len; i++)
if (byt[i % bel]==TLM _BYTE_ENABLED) Byte enable applied repeatedly
ol m_storage[adr+i] = ptr[i]; bytli] corresponds to ptr[i]
else
memcpy(&m_storage[adr], ptr, len); No byte enables

} else if (cmd == tim::TLM_READ_COMMAND) {

if (byt) {
trans.set_response_status(tim::TLM_BYTE ENABLE ERROR _ RESPONSE);
return tim::-TLM_COMPLETED; Target does not support read with

} else byte enables
memcpy(ptr, &m_storage[adr], len);

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Endianness

= Designed to maximize simulation speed

= Words in data array are host-endian

= Effective word length W = (BUSWIDTH +7) /8

= |nitiators and targets connected LSB-to-LSB, MSB-to-MSB
= Most efficient when everything is modeled host-endian

= Width-conversions with same endianness as host are free

Common transfers can use memcpy, width conversions don't modify transaction

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Little-endian host

LE Initiator

A

LE Target

y

data[W-1]

A+W-1

TLM-2.0

data[0]

A+0

v

BE Initiator

Neutral Target

data[W-1]

A+0

LE generic payload

A+W-1 A+0 A+0 A+W-1
data[W-1] data[0] data[W-1] data[0] data[W-1] data[0]
v v \ 4 \ 4 v
MSB mem[W-1] mem][0]

BE Target

Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

@c*

Big-endian host

LE Initiator

A

y

data[0]

A+W-1

data[W-1]

A+0

v

BE Initiator

data[0]

A+0

BE generic payload

data[W-1]

A+W-1

v

v

A+W-1

datal[0]

LE Target

A+0

data[W-1]
y

TLM-2.0

data[0]

\ 4

mem[W-1]

mem[0]

Neutral Target

\ 4

A+0

data[0]

A+W-1

data[W-1]

y

BE Target

Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

@c*

Part-word Transfers

Little-endian host Big-endian host
W=4 W=4
length = 6 length = 6
address = A address = A
data = data = byte enable =
1 A 4 Oxff
2 8 Oxff
3 2 Oxff
4 1 A Oxff
3 A+4 0
6 0
6 Oxff
) A+4 Oxff

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

m- c

Generic Payload Extension Methods

= Generic payload has an array-of-pointers to extensions

= One pointer per extension type

= Every transaction can potentially carry every extension type
= Flexible mechanism

template <typename T> T* set_extension (T* ext); Sticky extn

template <typename T> T* set_auto_extension (T* ext); Freed by ref counting
template <typename T> T* get_extension() const;

template <typename T> void clear_extension (); Clears pointer, not extn object

template <typename T> void release_extension (); mm => convert to auto
no mm => free extn object

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Extension Example

struct my_extension : tlim_extension<my_extension>
{
my_extension() : id(0) {}
tim_extension_base* clone() const { ... }
virtual void copy_from(tim_extension_base const &ext) { ... }
int id;

tim_generic_payload*® trans = mem_mgr->allocate();
trans->acquire();

my_extension* ext = new my_extension;
ext->id = 1;
trans.set_extension(ext);

socket->nb_transport_fw(*trans, phase, delay);
trans.release_extension<my extension>();

trans->release();

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

User-defined extension

Pure virtual methods

Heap allocation

Reference counting

Freed when ref count = 0

Trans and extn freed

m- c

Extension Rules

N

P, Interconnect } >

P, Interconnect }

\/

set —» set —»
clear «— clear «—

= Extensions should only be used downstream of the setter

Whoever sets the extension should clear the extension

If not reference counting, use set_extension/ clear_extension

If reference counting, use set_auto_extension

For sticky extensions, use set_extension

Within b_transport, either check or use set_extension / release_extension

K estine

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Instance-Specific Extensions
#include "tim_utils/instance_specific_extensions.h"

struct my_extn: tim_utils::instance_specific_extension<my_extn> {
int num;
I

class Interconnect : sc_module { Gives unique extensions
tim_utils::instance_specific_extension_accessor accessor; per module instance

virtual tim::tlm_sync_enum nb_transport_fw(...)
{
my_extn* extn;
accessor(trans).get_extension(extn);
if (extn) {
cout << extn->num << endl;
accessor(trans).clear_extension(extn);
} else {
extn = new my_extn;
extn->num = count++;
accessor(trans).set_extension(extn);

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

OSCI TLM-2.0

THE BASE PROTOCOL

O tim_phase

(J Base protocol rules

1 Base protocol phases

[Defining new protocol types

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Base Protocol - Coding Styles

= | oosely-timed is typically
— Blocking transport interface, forward and return path
— 2 timing points
— Temporal decoupling and the quantum keeper
— Direct memory interface

= Approximately-timed is typically
— Non-blocking transport interface, forward and backward paths
— 4 phases
— Payload event queues

= Loosely-timed and approximately-timed are only coding styles
= The base protocol defines rules for phases and call order

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Base Protocol and tim_phase

= The base protocol = tim_generic_payload + tim_phase
= tim_phase has 4 phases, but can be extended to add new phases

enum tlm_phase _enum { UNINITIALIZED PHASE =0,
BEGIN _REQ=1, END REQ, BEGIN_RESP, END_RESP };

class tim_phase {

public:
tim_phase();
tim_phase(unsigned int id);
tim_phase(const tim_phase enum& standard);
tim_phase& operator= (const tim_phase enumé& standard);
operator unsigned int() const;

X

#define DECLARE_EXTENDED_PHASE(name_arg) \
class tim_phase ##name_arg : public tim::tim_phase { \

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Base Protocol Rules 1

= Base protocol phases
— BEGIN_REQ — END_REQ — BEGIN_RESP — END_RESP
— Must occur in non-decreasing simulation time order
— Only permitted one outstanding request or response per socket
— Phase must change with each call (other than ignorable phases)
— May complete early

Generic payload memory management rules

Extensions must be ignorable

Target is obliged to handle mixed b_transport / nb_transport

Write response must come from target

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Base Protocol Rules 2

= Timing annotation on successive calls to nb_transport
= for a given transaction, must be non-decreasing
= for different transactions, mutual order is unconstrained

= Timing annotation on successive calls to b_transport
= order is unconstrained (loosely-timed)

b_transport does not interact with phases

b_transport is re-entrant

= For a given transaction, b_transport / nb_transport must not overlap

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Approximately-timed Timing Parameters

Initiator Target

BEGIN_REQ ol ——=

Request accept delay

END_REQ < v

Latency of target

BEGIN_RESP < —

Response accept delay

END_RESP > ¥

BEGIN_REQ must wait for previous END REQ, BEGIN_RESP for END RESP

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Pre-emption and Early Completion

= Permitted phase transition sequences
— BEGIN_REQ
— BEGIN_REQ (- enp_Rea) — BEGIN_RESP
— BEGIN_REQ — END_REQ — BEGIN_RESP
— BEGIN_REQ (- enp_Req) - BEGIN_RESP — END_RESP
— BEGIN_REQ — END_REQ — BEGIN_RESP — END_RESP

= |nitiator sends BEGIN_REQ and END_RESP
= Target sends END_REQ and BEGIN_RESP

Transaction completes early if nb_transport returns TLM_COMPLETED

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Examples of Early Completion

Phase Initiator Target
Call -, BEGIN_REQ, Ons
> >
Call -, BEGIN_REQ, Ons
> >
BEGIN_REQ Return TLM_ACCEPTED, -, -
., BEGIN_RESP, Ons Call
~ >
BEGIN_RESP TLM_COMPLETED, -, - Return

@- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Transaction Types

= Only three recommended alternatives

— Use the base protocol directly (with ignorable extensions)

Excellent interoperability

— Define a new protocol type class with a typedef for tim_generic_payload

Do whatever you like with extensions

— Define a new transaction type unrelated to the generic payload

Sacrifice interoperability; you are on your own

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Protocol Types Class

struct tim_base_protocol_types

{
typedef tim_generic_payload tim_payload_type;
typedef tim_phase tim_phase_type;

I3

template <typename TYPES = tim_base_protocol_types>
class tim_fw_transport_if
: public virtual tim_fw_nonblocking_transport_if<typename TYPES::tim_payload_type,
typename TYPES::tim_phase_type>

, public virtual tim_blocking_transport_if< typename TYPES::tim_payload_type>
, public virtual tim_fw_direct._ mem_if< typename TYPES::tim_payload_type>
, public virtual tim_transport_dbg_if< typename TYPES::tim_payload_type>

{+

template <typename TYPES = tim_base_protocol types>
class tim_bw_transport_if

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Defining a New Protocol Types Class

tim_initiator_socket<> socket1; 1. Use tim_base_protocol_types
struct my_protocol_types 2. Use new protocol based on generic payload
{

typedef tim_generic_payload tim_payload type;
typedef tim_phase tim_phase_type;

;

tim_initiator_socket< 32, my_protocol_types > socket2;

struct custom_protocol_types 3. Use new protocol unrelated to generic payload
{

typedef my payload tim_payload_type;

typedef my phase tim_phase_type;
I3

tim_initiator_socket< 32, custom_protocol_types > socket3;

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Extended Protocol Example 1

I/ User-defined extension class
struct Incr_cmd_extension: tim::tIm_extension<Incr_cmd_extension>

{
virtual tim_extension_base* clone() const {
Incr_cmd_extension* t = new Incr_cmd_extension;
t->incr_cmd = this->incr_cmd;
return t;
}
virtual void copy_from(tim_extension_base const & from) {
incr_cmd = static_cast<Incr_cmd_extension const &>(from).incr_cmd;
}

Incr_cmd_extension() : incr_cmd(false) {}
bool incr_cmd;

I3
struct incr_payload_types
{
typedef tim::tlm_generic_payload tim_payload type;
typedef tim::tlm_phase tim_phase_type;
X

User-defined protocol types class using the generic payload

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Extended Protocol Example 2

struct Initiator: sc_module

{

tim_utils::simple_initiator_socket< Initiator, 32, incr_payload_types > init_socket;

void thread process()

{

tim::tim_generic_payload trans;

Incr_cmd_extension* incr_cmd_extension = new Incr_cmd_extension;
trans.set_extension(incr_cmd_extension);

trans.set_command(tim::TLM_WRITE_COMMAND);
init_socket->b_transport(trans, delay);

trans.set_ command(tim::TLM_IGNORE_COMMAND);

incr_cmd_extension->incr_cmd = true;
init_socket->b_transport(trans, delay);

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Extended Protocol Example 3

I/l The target

Im_utils::simple_target socket< Memory, 32, incr_payload_types > targ_socket;
virtual void b_transport(tim::tim_generic_payload& t rans, sc_core::sc_time& t)
{

tim::tlm_command cmd = trans.get command();

Incr_cmd_extension* incr_cmd_extension,;
trans.get_extension(incr_cmd_extension);

if (incr_cmd_extension->incr_cmd) {

Assume the extension exists
if (cmd != tim::TLM_IGNORE_COMMAND) {
trans.set_response_status(tim::TLM_GENERIC_ERROR_RESPONSE);
return; . .
} Detect clash with read or write

++ m_storage[adr];

}

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

OSCI TLM-2.0

ANALYSIS PORTS

[Analysis Interface and Ports

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Analysis Ports

Module n :
Subssclrlber
Analysis Analysis
Module m port p port q
. Subscriber
p.write(99); q <2
)) n.g.bind(s1);
m.p.bind(q); n.q.bind(s2);
n.q.bind(s3); Subscriber
tim::tim_analysis_port<int> p; s3

struct Subscriber: sc_object, tim::tim_analysis_if<int>

{
Subscriber(char* n) : sc_object(n) {}
virtual void write(const int& t) { ... }

%

Analysis port may be bound to 0, 1 or more subscribers

mc

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Analysis Interface

template <typename T>
class tim_write_if : public virtual sc_core::sc_interface {
public:
virtual void write(const T& t) = 0; "Non-negotiated"”

X

template < typename T >
class tim_analysis_if : public virtual tim_write_if<T> {};

class tim_analysis_port : public sc_core::sc_object , public virtual tim_analysis_if< T > {
public:

void bind(tim_analysis_if<T> & _if);

void operator() (tim_analysis_if<T> & if);

bool unbind(tim_analysis_if<T> & if);

void write(const T &t) {

for(i = m_interfaces.begin(); i!= m_interfaces.end(); i++){
(*i)->write(t);

write() sends transaction to every subscriber

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Analysis Port Example

struct Subscriber : sc_object, tim::tlm_analysis_if<Trans> {
Subscriber (const char* n) : sc_object(n) {}
virtual void write(const Trans& t) {
cout << "Hello, got " << t.i << "\n";

}
X
SC_MODULE (M) { SC_MODULE (Top) {
tim::tim_analysis_port<Trans> ap; M* m:
Subscriber* subscriber1;
SC_CTOR (M) : ap("ap") { Subscriber* subscriber2;
SC_THREAD (T); SC _CTOR(Top) {
} m = new M("m");
void T () { subscriber1 = new Subscriber("subscriber1");
Trans t ={999 }; subscriber2 = new Subscriber("subscriber2");
ap.write(t); m->ap.bind(*subscriber1);
} m->ap.bind(*subscriber2);
I3 }

|

Subscriber implements analysis interface, analysis port bound to subscriber

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

Summary: Key Features of TLM-2

Transport interfaces with timing annotation and phases

DMI and debug interfaces

Loosely-timed coding style and temporal decoupling for simulation speed

Approximately-timed coding style for timing accuracy

= Sockets for convenience and strong connection checking

Generic payload for memory-mapped bus modeling

= Base protocol for interoperability between TL- models

Extensions for flexibility of modeling

m- c

TLM-2.0 Copyright © 2007-2009 by Open SystemC Initiative. All rights reserved.

SYSTEMC &

For further information visit

www.systemc.org

